Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.637
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Eur Radiol Exp ; 8(1): 40, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565836

RESUMO

BACKGROUND: To assess the feasibility and tissue response of using a gold nanoparticle (AuNP)-integrated silicone-covered self-expandable metal stent (SEMS) for local hyperthermia in a rat esophageal model. METHODS: The study involved 42 Sprague-Dawley rats. Initially, 6 animals were subjected to near-infrared (NIR) laser irradiation (power output from 0.2 to 2.4 W) to assess the in vitro heating characteristics of the AuNP-integrated SEMS immediately after its placement. The surface temperature of the stented esophagus was then measured using an infrared thermal camera before euthanizing the animals. Subsequently, the remaining 36 animals were randomly divided into 4 groups of 9 each. Groups A and B received AuNP-integrated SEMS, while groups C and D received conventional SEMS. On day 14, groups A and C underwent NIR laser irradiation at a power output of 1.6 W for 2 min. By days 15 (3 animals per group) or 28 (6 animals per group), all groups were euthanized for gross, histological, and immunohistochemical analysis. RESULTS: Under NIR laser irradiation, the surface temperature of the stented esophagus quickly increased to a steady-state level. The surface temperature of the stented esophagus increased proportionally with power outputs, being 47.3 ± 1.4 °C (mean ± standard deviation) at 1.6 W. Only group A attained full circumferential heating through all layers, from the epithelium to the muscularis propria, demonstrating marked apoptosis in these layers without noticeable necroptosis. CONCLUSIONS: Local hyperthermia using the AuNP-integrated silicone-covered SEMS was feasible and induced cell death through apoptosis in a rat esophageal model. RELEVANCE STATEMENT: A gold nanoparticle-integrated silicone-covered self-expanding metal stent has been developed to mediate local hyperthermia. This approach holds potential for irreversibly damaging cancer cells, improving the sensitivity of cancer cells to therapies, and triggering systemic anticancer immune responses. KEY POINTS: • A gold nanoparticle-integrated silicone-covered self-expanding metal stent was placed in the rat esophagus. • Upon near-infrared laser irradiation, this stent quickly increased the temperature of the stented esophagus. • Local hyperthermia using this stent was feasible and resulted in cell death through apoptosis.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Animais , Ratos , Esôfago , Estudos de Viabilidade , Ouro , Ratos Sprague-Dawley , Silicones , Stents
2.
Int J Hyperthermia ; 41(1): 2335199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565204

RESUMO

PURPOSE: c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS: The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS: Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION: JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.


Assuntos
Hipertermia Induzida , Sistema de Sinalização das MAP Quinases , Humanos , Células HeLa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Apoptose/fisiologia
3.
Int J Hyperthermia ; 41(1): 2325489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38632954

RESUMO

BACKGROUND: Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS: Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS: Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS: Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.


Assuntos
Antineoplásicos , Cisplatino , Hipertermia Induzida , Neoplasias , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Culina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Piroptose/efeitos dos fármacos , RNA Interferente Pequeno
4.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589452

RESUMO

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Assuntos
Aminopiridinas , Hipertermia Induzida , Indazóis , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro , Fatores de Transcrição de Choque Térmico/genética
5.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589455

RESUMO

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos Magnéticos
6.
BMC Anesthesiol ; 24(1): 132, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582882

RESUMO

BACKGROUND: There are only six past reports of super-refractory status epilepticus induced by spinal anesthesia. None of those patients have died. Only < 15 mg of bupivacaine was administered to all six of them and to our case. Pathophysiology ensuing such cases remains unclear. CASE PRESENTATION: A 27 year old gravida 2, para 1, mother at 37 weeks of gestation came to the operating theater for an elective cesarean section. She had no significant medical history other than controlled hypothyroidism and one episode of food allergy. Her current pregnancy was uneventful. Her American Society of Anesthesiologists (ASA) grade was 2. She underwent spinal anesthesia and adequate anesthesia was achieved. After 5-7 min she developed a progressive myoclonus. After delivery of a healthy baby, she developed generalized tonic clonic seizures that continued despite the induction of general anesthesia. She had rhabdomyolysis, one brief cardiac arrest and resuscitation, followed by stress cardiomyopathy and central hyperthermia. She died on day four. There were no significant macroscopic or histopathological changes in her brain that explain her super refractory status epilepticus. Heavy bupivacaine samples of the same batch used for this patient were analyzed by two specialized laboratories. National Medicines Quality Assurance Laboratory of Sri Lanka reported that samples failed to confirm United States Pharmacopeia (USP) dextrose specifications and passed other tests. Subsequently, Therapeutic Goods Administration of Australia reported that the drug passed all standard USP quality tests applied to it. Nonetheless, they have detected an unidentified impurity in the medicine. CONCLUSIONS: After reviewing relevant literature, we believe that direct neurotoxicity by bupivacaine is the most probable cause of super-refractory status epilepticus. Super-refractory status epilepticus would have led to her other complications and death. We discuss probable patient factors that would have made her susceptible to neurotoxicity. The impurity in the drug detected by one laboratory also would have contributed to her status epilepticus. We propose several possible mechanisms that would have led to status epilepticus and her death. We discuss the factors that shall guide investigators on future such cases. We suggest ways to minimize similar future incidents. This is an idiosyncratic reaction as well.


Assuntos
Raquianestesia , Cardiomiopatias , Hipertermia Induzida , Rabdomiólise , Estado Epiléptico , Humanos , Gravidez , Feminino , Adulto , Raquianestesia/efeitos adversos , Cesárea , Estado Epiléptico/etiologia , Estado Epiléptico/terapia , Bupivacaína/efeitos adversos , Cardiomiopatias/terapia , Rabdomiólise/terapia
7.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
8.
Heliyon ; 10(7): e29016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617938

RESUMO

This article aims to provide theoretical predictions for the thermal reactions of human tissues during tumor thermotherapy when exposed to laser irradiation and an external heat source. For the construction of a theoretical study of bioheat transfer, the selection of a suitable thermal model capable of accurately predicting the required thermal responses is essential. The effect of heat production by heat treatment on a spherical multilayer tumor tissue is evaluated using this approach. Analytical solution for the non-homogenous differential equations is derived in the Laplace domain. The study examines the impact of thermal relaxation time on tissue temperature and the subsequent thermal damage. The numerical findings of thermal damage and temperatures are depicted in a graphical representation. This model explains laser treatment, physical events, metabolic support, and blood perfusion. The numerical outcomes of the recommended model are validated by comparing them to the literatures.

9.
Int J Hyperthermia ; 41(1): 2342348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38653548

RESUMO

PURPOSE: To analyze the current practice of regional hyperthermia (RHT) for soft tissue sarcoma (STS) at 12 European centers to provide an overview, find consensuses and identify controversies necessary for future guidelines and clinical trials. METHODS: In this cross-sectional survey study, a 27-item questionnaire assessing clinical subjects and procedural details on RHT for STS was distributed to 12 European cancer centers for RHT. RESULTS: We have identified seven controversies and five consensus points. Of 12 centers, 6 offer both, RHT with chemotherapy (CTX) or with radiotherapy (RT). Two centers only offer RHT with CTX and four centers only offer RHT with RT. All 12 centers apply RHT for localized, high-risk STS of the extremities, trunk wall and retroperitoneum. However, eight centers also use RHT in metastatic STS, five in palliative STS, eight for superficial STS and six for low-grade STS. Pretherapeutic imaging for RHT treatment planning is used by 10 centers, 9 centers set 40-43 °C as the intratumoral target temperature, and all centers use skin detectors or probes in body orifices for thermometry. DISCUSSION: There is disagreement regarding the integration of RHT in contemporary interdisciplinary care of STS patients. Many clinical controversies exist that require a standardized consensus guideline and innovative study ideas. At the same time, our data has shown that existing guidelines and decades of experience with the technique of RHT have mostly standardized procedural aspects. CONCLUSIONS: The provided results may serve as a basis for future guidelines and inform future clinical trials for RHT in STS patients.


Assuntos
Hipertermia Induzida , Sarcoma , Humanos , Sarcoma/terapia , Hipertermia Induzida/métodos , Europa (Continente) , Inquéritos e Questionários , Estudos Transversais , Consenso
10.
Wilderness Environ Med ; 35(1_suppl): 112S-127S, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38425235

RESUMO

The Wilderness Medical Society (WMS) convened an expert panel in 2011 to develop a set of evidence-based guidelines for the recognition, prevention, and treatment of heat illness. The current panel retained 5 original members and welcomed 2 new members, all of whom collaborated remotely to provide an updated review of the classifications, pathophysiology, evidence-based guidelines for planning and preventive measures, and recommendations for field- and hospital-based therapeutic management of heat illness. These recommendations are graded based on the quality of supporting evidence and the balance between the benefits and risks or burdens for each modality. This is an updated version of the WMS clinical practice guidelines for the prevention and treatment of heat illness published in Wilderness & Environmental Medicine. 2019;30(4):S33-S46.


Assuntos
Transtornos de Estresse por Calor , Medicina Selvagem , Humanos , Medicina Ambiental , Transtornos de Estresse por Calor/prevenção & controle , Sociedades Médicas
11.
Int J Hyperthermia ; 41(1): 2320852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465653

RESUMO

INTRODUCTION: Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, in-silico biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions. METHODS: An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data. RESULTS: Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect. CONCLUSION: The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Feminino , Humanos , Terapia Combinada , Células HeLa , Probabilidade , Temperatura , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/terapia
12.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542073

RESUMO

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Camundongos , Animais , Lipossomos , Antígeno Ki-67 , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia , Hipertermia , Linhagem Celular Tumoral , Polietilenoglicóis
13.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543205

RESUMO

Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.

14.
Biomaterials ; 307: 122514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428093

RESUMO

Surgical intervention followed by chemotherapy is the principal treatment strategy for bladder cancer, which is hindered by significant surgical risks, toxicity from chemotherapy, and high rates of recurrence after surgery. In this context, a novel approach using mild magnetic hyperthermia therapy (MHT) for bladder cancer treatment through the intra-bladder delivery of magnetic nanoparticles is presented for the first time. This method overcomes the limitations of low magnetic thermal efficiency, inadequate tumor targeting, and reduced therapeutic effectiveness associated with the traditional intravenous administration of magnetic nanoparticles. Core-shell Zn-CoFe2O4@Zn-MnFe2O4 (MNP) nanoparticles were developed and further modified with hyaluronic acid (HA) to enhance their targeting ability toward tumor cells. The application of controlled mild MHT using MNP-HA at temperatures of 43-44 °C successfully suppressed the proliferation of bladder tumor cells and tumor growth, while also decreasing the expression levels of heat shock protein 70 (HSP70). Crucially, this therapeutic approach also activated the body's innate immune response involving macrophages, as well as the adaptive immune responses of dendritic cells (DCs) and T cells, thereby reversing the immunosuppressive environment of the bladder tumor and effectively reducing tumor recurrence. This study uncovers the potential immune-activating mechanism of mild MHT in the treatment of bladder cancer and confirms the effectiveness and safety of this strategy, indicating its promising potential for the clinical management of bladder cancer with a high tendency for relapse.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia , Fenômenos Magnéticos , Linhagem Celular Tumoral
15.
Int Immunopharmacol ; 130: 111769, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442584

RESUMO

Radiofrequency ablation (RFA) has been used as an alternative to surgical management of early-stage hepatocellular carcinoma (HCC). However, when large and irregular HCCs are subjected to RFA, a safety margin is usually difficult to obtain, thus causing a sublethal radiofrequency hyperthermia (RFH) at the ablated tumor margin. This study investigated the feasibility of using RFH to enhance the effect of OK-432 on HCC, with the aim to generate a tumor-free margin during RFA of HCC. Our results showed OK-432 could activate the cGAS-STING pathway, and RFH could further enhance the activation. Meanwhile, RFH could induce a high expression of TLR4, and TLR4 might be an upstream molecular of the cGAS-STING pathway. The combined therapy of RFH with OK-432 resulted in a better tumor response, and a prolonged survival compared to the other three treatments. In conclusion, RFH in combination with OK-432 might reduce the residual and recurrent tumor after RFA of large and irregular HCCs, and serve as a new option for other solid malignancies treated by RFA.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Proteínas de Membrana , Nucleotidiltransferases , Picibanil , Ablação por Radiofrequência , Receptor 4 Toll-Like , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Picibanil/farmacologia , Picibanil/uso terapêutico , Estudos Retrospectivos , Receptor 4 Toll-Like/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Masculino
16.
J Therm Biol ; 120: 103812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38447276

RESUMO

Staphylococcus aureus is one of the most common infectious agents, causing morbidity and mortality worldwide. Most pathogenic bacteria are classified in the group of mesophilic bacteria and the optimal growth temperature of these bacteria changes between 33 and 41 °C. Increased temperature can inhibit bacterial growth and mobility, which in turn, can trigger autolysis and cause cell wall damage. Hyperthermia treatment is defined as a heat-mediated treatment method applied using temperatures higher than body temperature. Nowadays, this treatment method is used especially in the treatment of tumours. Hyperthermia treatment is divided into two groups: mild hyperthermia and ablative or high-temperature hyperthermia. Mild hyperthermia is a therapeutic technique in which tumour tissue is heated above body temperature to produce a physiological or biological effect but is often not aimed at directly causing significant cell death. The goal of this method is to achieve temperatures of 40-45 °C in human tissues for up to 2 h. Hyperthermia can be used in the treatment of infections caused by such bacterial pathogens. In addition, using hyperthermia in combination with antimicrobial drugs may result in synergistic effects and reduce resistance issues. In our study, we used two different temperature levels (37 °C and 45 °C). We assessed growth inhibition, some virulence factors, alteration colony morphologies, and antimicrobial susceptibility for several antibiotics with three methods (Kirby-Bauer, E-test and broth microdilution) under hyperthermia. In the study, we observed that hyperthermia affected the urease enzyme, antibiotic sensitivity levels showed synergy with hyperthermia, and changes occurred in colony diameters and affected bacterial growth. We hypothesise that hyperthermia might be a new therapeutic option for infectious diseases as a sole agent or in combination with different antimicrobials.


Assuntos
Hipertermia Induzida , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Hipertermia Induzida/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Temperatura Alta , Infecções Estafilocócicas/terapia
17.
Nanotheranostics ; 8(2): 163-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444740

RESUMO

Background: Combining magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) offers the ability to perform localized hyperthermia and magnetic particle imaging-assisted thermometry of hyperthermia treatment. This allows precise regional selective heating inside the body without invasive interventions. In current MPI-MFH platforms, separate systems are used, which require object transfer from one system to another. Here, we present the design, development and evaluation process for integrable MFH platforms, which extends a commercial MPI scanner with the functionality of MFH. Methods: The biggest issue of integrating magnetic fluid hyperthermia platforms into a magnetic particle imaging system is the magnetic coupling of the devices, which induces high voltage in the imaging system, and is harming its components. In this paper, we use a self-compensation approach derived from heuristic algorithms to protect the magnetic particle imaging scanner. The integrable platforms are evaluated regarding electrical and magnetic characteristics, cooling capability, field strength, the magnetic coupling to a replica of the magnetic particle imaging system's main solenoid and particle heating. Results: The MFH platforms generate suitable magnetic fields for the magnetic heating of particles and are compatible with a commercial magnetic particle imaging scanner. In combination with the imaging system, selective heating with a gradient field and steerable heating positioning using the MPI focus fields are possible. Conclusion: The proposed MFH platforms serve as a therapeutic tool to unlock the MFH functionality of a commercial magnetic particle imaging scanner, enabling its use in future preclinical trials of MPI-guided, spatially selective magnetic hyperthermia therapy.


Assuntos
Hipertermia Induzida , Campos Magnéticos
18.
Nanomedicine (Lond) ; 19(10): 841-854, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436253

RESUMO

Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Oxaliplatina/uso terapêutico , Terapia Fototérmica , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
19.
Biomed Mater ; 19(3)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545719

RESUMO

Laser hyperthermia therapy (HT) has emerged as a well-established method for treating cancer, yet it poses unique challenges in comprehending heat transfer dynamics within both healthy and cancerous tissues due to their intricate nature. This study investigates laser HT therapy as a promising avenue for addressing skin cancer. Employing two distinct near-infrared (NIR) laser beams at 980 nm, we analyze temperature variations within tumors, employing Pennes' bioheat transfer equation as our fundamental investigative framework. Furthermore, our study delves into the influence of Ytterbium nanoparticles (YbNPs) on predicting temperature distributions in healthy and cancerous skin tissues. Our findings reveal that the application of YbNPs using a Gaussian beam shape results in a notable maximum temperature increase of 5 °C within the tumor compared to nanoparticle-free heating. Similarly, utilizing a flat top beam alongside YbNPs induces a temperature rise of 3 °C. While this research provides valuable insights into utilizing YbNPs with a Gaussian laser beam configuration for skin cancer treatment, a more thorough understanding could be attained through additional details on experimental parameters such as setup, exposure duration, and specific implications for skin cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias Cutâneas , Humanos , Itérbio , Hipertermia Induzida/métodos , Neoplasias Cutâneas/terapia , Temperatura Alta , Simulação por Computador , Lasers , Modelos Biológicos
20.
Phys Med Biol ; 69(8)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38471172

RESUMO

Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Camundongos , Calefação , Neoplasias/terapia , Hipertermia Induzida/métodos , Temperatura Alta , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA