Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386290

RESUMO

This study is primarily focused on the synthesis of silver and copper oxide nanoparticles utilizing the extract of Ipomoea staphylina plant and their larvicidal activity against specific larvae. Notably, Anopheles stephensi and Aedes aegypti are significant disease vectors responsible for transmitting diseases such as malaria, dengue fever, Zika virus, and chikungunya (Anopheles stephensi), and dengue and Zika (Aedes aegypti). These mosquitoes have a substantial impact on urban areas, influencing disease transmission dynamics. In an effort to control these larvae, we have pursued the synthesis of a herbal-based nanomedicine derived from I. staphylina, a valuable herb in traditional medicine. Our successful synthesis of silver and CuO nanoparticles followed environmentally sustainable green chemistry methodologies. The I. staphylina plant extract played a dual role as a reducing agent and dopant, aligning with principles of sustainability. We employed X-ray diffraction (XRD) analysis to validate the nanoparticle structure and size, while field-emission scanning electron microscopy (FE-SEM) revealed well-defined nanostructures. Elemental composition was determined through energy-dispersive X-ray (EDX) analysis, and UV-visible spectroscopy provided insights into the bandgap energy (3.15 eV for silver, 1.2 eV for CuO nanoparticles). These nanoparticles exhibited robust larvicidal activity, with CuO nanoparticles surpassing silver nanoparticles in terms of LC50 and LC90 values. Moreover, the developmental toxicity of CuO and Ag NPs was evaluated in zebrafish embryos as part of non-target eco-toxicological studies conducted in a standard laboratory environment. These findings underscore the potential utility of these nanoparticles as highly effective and environmentally friendly natural pesticides, offering cost-effectiveness and ecological benefits.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Nanopartículas Metálicas , Zika virus , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Larva , Cobre/farmacologia , Peixe-Zebra , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química , Óxidos
2.
Chem Biodivers ; 21(2): e202301560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38251927

RESUMO

Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5 ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.


Assuntos
Culex , Compostos Heterocíclicos , Hidrazinas , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Compostos Heterocíclicos/farmacologia , Extratos Vegetais/química
3.
Parasitol Int ; 98: 102820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884077

RESUMO

Aedes aegypti, a mosquito, is responsible for the spread of many diseases, including dengue, zika, and chikungunya. However, due to this mosquito's developed resistance to conventional pesticides, effectively controlling it has proven to be challenging. This study aimed to evaluate the insecticidal potential of the essential oil from the leaves of Eugenia stipitata against Ae. aegypti, offering a natural and sustainable alternative for mosquito control. Tests were conducted using third-stage larvae to evaluate larvicidal activity and pupae collected up to 14 h after transformation to investigate pupicidal activity. Throughout the bioassays, the organisms were exposed to various essential oil concentrations. The findings demonstrated that the essential oil of E. stipitata exhibited larvicidal action, resulting in 100% larval mortality after 24 h and an LC50 value of 0.34 mg/mL. The effectiveness of essential oil as a pupicidal agent was also demonstrated by its LC50 value of 2.33 mg/mL and 100% larval mortality in 24 h. It can be concluded that the essential oil of E. stipitata holds promise as a natural pest control agent. Its use may reduce the reliance on conventional chemical pesticides, providing a more sustainable and effective strategy to combat diseases spread by mosquitoes.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Infecção por Zika virus , Zika virus , Animais , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Folhas de Planta/química , Larva , Extratos Vegetais/química
4.
Acta Trop ; 249: 107067, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984549

RESUMO

Insecticide resistance is a threat to vector control worldwide. In the Philippines, dengue burden remains significant, thus prioritizing the need to develop eco-friendly control strategies and tools against mosquito vectors. Various Allium species have been found to possess larvicidal activity against dengue-carrying mosquitoes. In this study, the larvicidal activity of the crude extract of Allium ampeloprasum L. (Asparagales: Amaryllidaceae) was studied in concentrations ranging from 1 to 10,000 mg/L against the third (L3) and fourth (L4) larval instars of Aedes aegypti L. Larval mortality at 48 h were subjected to probit analysis and Kruskal-Wallis H test to estimate lethal concentrations and to determine significant means among the groups, respectively. Results show that the crude extract of A. ampeloprasum L. demonstrated larvicidal activity against the L3 and L4 Ae. aegypti L. Concentrations corresponding to 50% mortality (Lethal Concentration 50 [LC50]) among L3 and L4 larvae were estimated at 2,829.16 and 13,014.06 mg/L, respectively. Moreover, 90% mortality (LC90) in the L3 and L4 larvae were estimated at 9,749.75 and 57,836.58 mg/L, respectively. Only 1,000 and 10,000 mg/L for L3, and the 10,000 mg/L for L4, had comparable larvicidal action to the commercial larvicide used as a positive control. The results support the presence of bioactive compounds with larvicidal properties, thus suggesting A. ampeloprasum L. as a potential source of active ingredients for the development of a plant-based larvicide.


Assuntos
Aedes , Allium , Amaryllidaceae , Dengue , Inseticidas , Animais , Cebolas , Larva , Folhas de Planta , Inseticidas/farmacologia , Extratos Vegetais/farmacologia
5.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135245

RESUMO

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Assuntos
Aedes , Inseticidas , Selênio , Xenorhabdus , Febre Amarela , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selênio/análise , Selênio/farmacologia
6.
Exp Parasitol ; 252: 108586, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468087

RESUMO

Extensive fumigation of synthetic pesticides to control the mosquito vector during each post-monsoon season in Pakistan significantly enhanced the environmental contamination and extinction of beneficial insects from the urban ecosystems. In this context, the present study examined the larvicidal efficacy of green synthesized iron nanoparticles (IONPs), using an aqueous leaf extract of Grevillea robusta against the early 2nd and 4th instar larvae of Aedes aegypti and Anopheles stephensi in Pakistan. The prepared IONPs were characterized by UV-Vis spectrum, FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive diffraction. Larvicidal bioassay was conducted at various concentrations (80, 160, 240, 320, and 400 ppm) of IONPs prepared from leaf extract of G. robusta, and readings were taken-every 12 h for two consecutive days. In vitro, larvicidal assay, G. robusta leaf extract IONPs exhibited high mortalities of 64-96% (LC50 = 259.07 ppm; LC90 = 443.92 ppm) for the second instar and 65-98% (LC50 = 238.05 ppm; LC90 = 433.93 ppm) for the fourth instar of Ae. aegypti, while in the case of An. stephensi 56-84% (LC50 = 297.96 ppm; LC90 = 528.69 ppm) for the second and 56-88% (LC50 = 292.72 ppm; LC90 = 514.00 ppm) mortality for fourth larvae at 12-48 h post-exposure times were observed respectively. Significant (p < 0.05) dose-dependent and exposure time-dependent trends were observed among the 2nd and 4th larvalinstar of An. stephensi and Ae. aegypti. However, both species showed similar response and observed no significant (p > 0.05) difference in percentage mortality between the vector mosquitoes An. stephensi and Ae. aegypti. Overall, this study demonstrates that the larvicidal efficacy of green synthesized IONPs at low concentrations can be an ideal eco-friendly and cost-effective biocontrol of vector mosquitoes' larvae of An. stephensi and Ae. aegypti.


Assuntos
Aedes , Inseticidas , Animais , Ecossistema , Inseticidas/farmacologia , Larva , Nanopartículas Magnéticas de Óxido de Ferro , Mosquitos Vetores , Extratos Vegetais/farmacologia , Folhas de Planta
7.
Environ Sci Pollut Res Int ; 30(26): 69321-69329, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133656

RESUMO

The aim of the present study was to identify the active principle from Catharanthus roseus leaf using larvicidal bioassay against three mosquito species viz. Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. Preliminary studies of the three successive extracts such as hexane, chloroform, and methanol against Ae. aegypti larvae showed that the chloroform extract was more active with LC50 and LC90 values of 40.09 ppm and 189.15 ppm respectively. Bioassay guided fractionation of the active chloroform extract resulted in the isolation of a triterpenoid (ursolic acid) as the active constituent. Three derivatives acetate, formate, and benzoate were prepared using this, and they were tested for their larvicidal activity against three mosquito species. The acetyl derivative was highly active against all the three species compared to the parent compound ursolic acid; the activities of benzoate and formate were higher than ursolic acid when tested against Cx. quinquefasciatus. This is the first report related to ursolic acid from C. roseus with mosquito larvicidal activity. The pure compound could be considered for medicinal and other pharmacological applications in future.


Assuntos
Aedes , Anopheles , Catharanthus , Culex , Inseticidas , Animais , Larva , Clorofórmio , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Ácido Ursólico
8.
Saudi J Biol Sci ; 30(6): 103651, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138927

RESUMO

The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.

9.
Chemosphere ; 323: 138263, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36858116

RESUMO

Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 µg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.


Assuntos
Anti-Infecciosos , Brassica , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Botrytis , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
Med Vet Entomol ; 37(3): 483-490, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36799890

RESUMO

The development of insecticide resistance is a serious consequence of the widespread applications of synthetic insecticides. Recent studies have provided alternatives to currently available insecticides. Here, novel cationic gemini surfactants were synthesized to assess their insecticidal activities using laboratory and field strains larvae of Culex pipiens Linnaeus (Diptera: Culicidae). The efficacy of these surfactants was compared to that of clove oil and spinosad. The two surfactants G1 and G2 showed good insecticidal activities in laboratory strain with LC50 0.013 and 0.054 ppm, respectively, relative to spinosad with LC50 0.027 ppm, 48 h posttreatment. Although spinosad showed high efficiency against lab strain, it exhibited a high resistance ratio (RR) of 15.111 and 13.111 toward the field strain at 24 and 48 h posttreatment, respectively. The two gemini surfactants have a good safety profile and low RR (RR <5), which is close to clove oil; however, G1 and G2 presented high activities with 11,043.230 and 2658.648 folds, respectively, compared to clove oil. The treated Cx. pipiens larvae showed severe morphological malformations after treatment with gemini surfactants. The results of this study are promising in terms of developing novel, effective, affordable, and safe approaches for mosquito control strategies to reduce the risk of arbovirus transmission, which remains a global public health threat.


Assuntos
Culex , Culicidae , Inseticidas , Vírus do Nilo Ocidental , Animais , Mosquitos Vetores , Óleo de Cravo , Inseticidas/farmacologia , Larva
11.
Mar Drugs ; 21(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827158

RESUMO

Culex pipiens mosquitoes are transmitters of many viruses and are associated with the transmission of many diseases, such as filariasis and avian malaria, that have a high rate of mortality. The current study draws attention to the larvicidal efficacy of three methanolic algal extracts, Cystoseira myrica, C. trinodis, and C. tamariscifolia, against the third larval instar of Cx. pipiens. The UPLC-ESI-MS analysis of three methanol fractions of algal samples led to the tentative characterization of twelve compounds with different percentages among the three samples belonging to phenolics and terpenoids. Probit analysis was used to calculate the lethal concentrations (LC50 and LC90). The highest level of toxicity was attained after treatment with C. myrica extract using a lethal concentration 50 (LC50) of 105.06 ppm, followed by C. trinodis (135.08 ppm), and the lowest level of toxicity was achieved by C. tamariscifolia (138.71 ppm) after 24 h. The elevation of glutathione-S-transferase (GST) and reduction of acetylcholine esterase (AChE) enzymes confirm the larvicidal activity of the three algal extracts. When compared to untreated larvae, all evaluated extracts revealed a significant reduction in protein, lipid, and carbohydrate contents, verifying their larvicidal effectiveness. To further support the observed activity, an in silico study for the identified compounds was carried out on the two tested enzymes. Results showed that the identified compounds and the tested enzymes had excellent binding affinities for each other. Overall, the current work suggests that the three algal extractions are a prospective source for the development of innovative, environmentally friendly larvicides.


Assuntos
Aedes , Anopheles , Inseticidas , Animais , Estudos Prospectivos , Inseticidas/química , Compostos Fitoquímicos/análise , Metanol/química , Plantas , Larva , Extratos Vegetais/química , Folhas de Planta/química
12.
Appl Biochem Biotechnol ; 195(4): 2636-2647, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35201599

RESUMO

Mosquitoes are important vectors responsible for spreading a number of diseases affecting both humans and animals. Many diseases as dengue, chikungunya, yellow fever, malaria, filariasis and Japanese encephalitis are spread by mosquitoes. There are many reports of plant extracts and their active constituents showing anti-mosquito activities as larvicidal, pupicidal, ovicidal and adulticidal activities. Persea americana Mill. (Lauraceae), known as avocado, has been reported to show many pharmacological and antimicrobial activities. In this communication, the mosquito larvicidal activities of the three-active constituents, avocadene, avocadyne and avocadenol-A, from the methanolic extract of the unripe fruit peel are presented. The three mosquito species studied were Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. All three compounds showed the highest larvicidal activity against An. stephensi, LC50 values being 2.80ppm for avocadene, 2.33ppm for avocadyne and 2.07ppm for avocadenol-A. Avocadene showed larvicidal activity of 3.73ppm against Ae. aegypti and 5.96ppm against Cx. quinquefasciatus. The LC50 value of avocadyne was 5.35ppm against Ae. aegypti and 3.98ppm against Cx. quinquefasciatus. Similarly, avocadenol-A showed 6.56ppm against Ae. aegypti and 2.35ppm against Cx. quinquefasciatus. The active constituents were isolated by bioactivity-guided fractionation by silica gel column chromatography and RP HPLC. The compounds were identified by physical and spectroscopic data and compared with literature values already reported.


Assuntos
Culex , Inseticidas , Persea , Humanos , Animais , Mosquitos Vetores , Frutas , Inseticidas/química , Larva , Extratos Vegetais/química , Folhas de Planta/química
13.
Parasitol Int ; 92: 102688, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36228969

RESUMO

The use of chemical insecticides in agriculture has posed several challenges to environment and ecosystem health. Pesticides of biological origin are considered to be suitable for sustainable environment. In the present study bioactive compounds from Penicillium sp. was isolated and tested for insecticidal activity on Spodoptera litura and Culex quinquefasciatus larvae. Ethyl acetate extract of Penicillium sp. were characterized using GC-MS and FT-IR analysis. GC-MS analysis showed 20 different bioactive compounds namely, Propanoic acid, ethyl ester, Acetic Acid, Propyl Ester, Isopentyl Acetate, Acetic Acid, 2-Methylpropyl Ester, Behenic alcohol, 1-Hexadecene, 1-Octadecene, 1-Hexacosanol, n-Hexadecanoic acid, 1-Tetradecanol, 1-Dodecene, Tetrydamine, and Octadecanoic acid. The presence of functional groups such as, chloroalkanes, sulfonates, phosphines, amines, carboxylic acid, alkanes, and isocyanates was identified by using FTIR. Ethyl acetate extract of Penicillium sp., were tested for larvicidal activity on Spodoptera litura and Culex quinquefasciatus larvae showed significant larval mortality after 48 h of exposure with LC50: 72.205 mg/ml: LC90: 282.783 mg/ml and LC50: 94.701 mg/ml: LC90:475.049 mg/ml respectively. High antifeedant activity was observed in 300 µg/ml at 48 h of crude extract exposure. The present study concludes that Penicillium sp., secondary metabolites are effective for control of Spodoptera litura and Culex quinquefasciatus larvae.


Assuntos
Aedes , Culex , Inseticidas , Penicillium , Animais , Spodoptera , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Inseticidas/farmacologia , Inseticidas/química , Larva , Agricultura , Ésteres/análise , Ésteres/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
14.
Int J Biol Macromol ; 224: 699-712, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302481

RESUMO

The role of mosquito vectors in spreading disastrous diseases to living organisms, especially to humans is inevitable and undeniable. The impacts of the available chemical and synthetic insecticides on non-specific organisms as well as on nature are being the reason behind the search for target-specific, biocompatible and eco-friendly alternatives. The Madhuca longifolia seed extract and cry proteins from Bacillus thuringiensis-based nanocomposites (Cp-Ml-ZnO NCs) were produced to conquer the above-mentioned issues. The Cp-Ml-ZnO NCs (100 µg/mL) expressed better scavenging potentiality on 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radicals than Ml seed extract and Ml-ZnO NPs. The susceptibility of tested vector larvae to the Cp-Ml-ZnO NCs was Ae. aegypti ˃An. stephensi ˃ Cx. quinquefasciatus along with LC50-27.73, 34.81, and 42.54 µg/mL concentration. The target specificity and biocompatibility of Cp-Ml-ZnO NCs were authenticated by the results obtained by evaluating the efficacy on D. similis, A. salina, P. reticulata, G. affinis, and RBCs of goat blood. Thus the Cp-Ml-ZnO NCs could be adopted for the control of vector larvae.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Malária , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Óxido de Zinco , Animais , Humanos , Larva , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química
15.
Environ Sci Pollut Res Int ; 30(15): 42608-42628, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36260230

RESUMO

Spodoptera litura and Helicoverpa armigera are polyphagous pests of agricultural crops in the Asian tropics since these pests have been responsible for massive crop and carry economic losses and low commodity production. At the same time, mosquitoes are vectors for numerous dreadful diseases, which is the most important group of insect for their public health concern. Using synthetic insecticides to control the pests can lead to contamination of land surface and groundwater and impact beneficial soil organisms and nontarget species. Applications of bioactive compounds are received considerable attention across the world as alternatives to synthetic insecticides. In the current study, actinobacterial secondary metabolite was isolated from Actinokineospora fastidiosa for the first time. The effect of actinobacterial metabolite (l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester) was assessed on agricultural pest S. litura and H. armigera, mosquito vectors larvae Ae. aegypti, An. stephensi, and Cx. quinquefasciatus. The bioactive fraction was characterized through UV, FTIR, and NMR analysis. GC-MS analyses reveal the existence of a bioactive compound with a respective retention time of 19.740 responsible for larvicidal activity. The bioefficacy of the l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester showed high antifeedant activity on S. litura (80.80%) and H. armigera (84.49%); and larvicidal activity on S. litura (82.77%) and H. armigera (88.00%) at 25 µg/mL concentration, respectively. The effective LC50 values were 8.07 µg/mL (F = 2.487, r2 = 0.988, P ≤ 0.05) on S. litura and 7.53 µg/mL (F = 123.25, r2 = 0.951, P ≤ 0.05) on H. armigera. The mosquito larvicidal effect of isolated compounds l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester treated against Ae. aegypti, An. stephensi, and Cx. quinquefasciatus the obtained percentage mortality was 96.66, 83.24, 64.52, 50.00, and 40.00% against Ae. aegypti; 100.00, 86.22, 73.81, 65.37, and 56.24% against An. stephensi; 100.00, 90.00, 76.24, 68.75, and 56.23% against Cx. quinquefasciatus. The mosquito larvae of Ae. aegypti obtained LC50 value was 13.25 µg/mL, F = 28.50, r2 = 0.90; on An. stephensi was 10.19 µg/mL, F = 15.55, r2 = 0.83, and Cx. quinquefasciatus was 9.68 µg/mL, F = 20.00, r2 = 0.87. Furthermore, l-isoleucine-, N-allyloxycarbonyl-, and dodecyl ester-treated larvae produced significant pupicidal activity on S. litura (62.71%) and H. armigera (66.50%) at 25 µg/mL, along with increased larval and pupal duration as compared to control group. Treated larvae revealed obliteration in the midgut epithelial cells and destruction of microvilli was noticed as compared to the control. The isolated compounds l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester did not produce any significant mortality on zebrafish embryos in all tested concentrations on biosafety observation. The potential microbial isolated molecule may fit well in IPM programs. Since the risk to human health, the environment, etc. is unknown.


Assuntos
Actinobacteria , Aedes , Anopheles , Culex , Inseticidas , Animais , Humanos , Antioxidantes/farmacologia , Isoleucina/análise , Isoleucina/farmacologia , Inseticidas/química , Peixe-Zebra , Larva , Extratos Vegetais/farmacologia , Folhas de Planta/química
16.
J Vector Borne Dis ; 60(4): 401-413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174518

RESUMO

Background & objectives: Vector control measures are important in lowering the spread of infections spread by mosquito. Synthetic pesticides used to suppress vector populations during the larval stage have had adverse impacts on people and the environment. The early III instar larvae of Aedes aegypti and Anopheles stephensi were the targets of the current experiment, which assessed the larvicidal ability of petroleum ether, chloroform, methanol, and aqueous extracts of Annona squamosa leaves. Methods: Using the standard World Health Organization (WHO) larval bioassay test, leaf extracts were evaluated for their activity against Ae. aegypti and An. stephensi to determine lethal doses. Phytochemical analysis and gas chromatography-mass spectrometry (GC-MS) were carried out to identify larvicidal components in the extract. Further analysis using a scanning electron microscope (SEM) was done to check the extracts toxicity for both mosquito larvae. Results: The larvicidal active components were identified by GC-MS as tetradecanoic acid, cis-vaccenic acid, and 2,4-di-tert-butylphenol etc. Methanol leaf extracts of A. squamosa (ASME) exhibited strong larvicidal activity against the early 3rd instar larvae of Ae. aegypti and An. stephensi with Lethal concentration (LC50) values of 51.450 ppm and 107.121 ppm. Cell damages to the larva post exposure to ASME were examined. Interpretation & conclusion: This finding showed that the ASME has better larvicidal activity and its components that may be used to kill larvae as larvicides. The extracts toxicity towards damage of midgut of larva further suggests that this plant methanol leaf extracts could be effective in larval growth control approaches.


Assuntos
Aedes , Annona , Anopheles , Culex , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Metanol/farmacologia , Mosquitos Vetores , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta
17.
Braz. j. biol ; 83: e246230, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339369

RESUMO

Abstract Dengue fever vectored by the mosquito Aedes aegypti is one of the most rapidly spreading insect-borne diseases. Current reliance of dengue vector control is mostly on chemical insecticides. Growing insecticide resistance in the primary mosquito vector, Aedes aegypti, limits the effectiveness of vector control through chemical insecticides. These chemical insecticides also have negative environmental impacts on animals, plants and human health. Myco-biocontrol agents are naturally occurring organisms and are found to be less damaging to the environment as compared to chemical insecticides. In the present study, entomopathogenic potential of local strains of fungi isolated from soil was assessed for the control of dengue vector. Local fungal isolates presents better alternative to introducing a foreign biocontrol strain, as they may be better adapted to environmental conditions of the area to survive and may have more entomopathogenic efficacy against target organism. Larvicidal efficacy of Fusarium equiseti and Fusarium proliferatum was evaluated against Aedes aegypti. Local strains of F. equiseti (MK371718) and F. proliferatum (MK371715) were isolated from the soil of Changa Manga Forest, Pakistan by using insect bait method. Larvicidal activity of two Fusarium spp. was tested against forth instar larvae of A. aegypti in the laboratory, using concentrations 105, 106, 107 and 108 conidia /ml. LC50 values for F. equiseti after 24h, 48h, 72h and 96h of exposure were recorded as 3.8x 108, 2.9x107, 2.0x107, and 7.1x106 conidia /ml respectively while LC50 values for F. proliferatum were recorded as 1.21x108, 9.6x107, 4.2x107, 2.6x107 conidia /ml respectively after 24h, 48h, 72h and 96h of exposure. The results indicate that among two fungal strains F. equiseti was found to be more effective in terms of its larvicidal activity than F. proliferatum against larvae of A. aegypti.


Resumo A dengue transmitida pelo mosquito Aedes aegypti é uma das doenças transmitidas por insetos de propagação mais rápida. A dependência atual do controle do vetor da dengue é principalmente de inseticidas químicos. O aumento da resistência a inseticidas no principal vetor do mosquito, Aedes aegypti, limita a eficácia do controle do vetor por meio de inseticidas químicos. Esses inseticidas químicos também têm impactos ambientais negativos sobre os animais, plantas e saúde humana. Os agentes de micobiocontrole são organismos que ocorrem naturalmente e são menos prejudiciais ao meio ambiente em comparação com os inseticidas químicos. No presente estudo, avaliou-se o potencial entomopatogênico de cepas locais de fungos isolados do solo para o controle do vetor da dengue. Isolados de fungos locais apresentam melhor alternativa para a introdução de uma cepa de biocontrole estrangeira, pois podem ser mais bem adaptados às condições ambientais da área para sobreviver e podem ter maior eficácia entomopatogênica contra o organismo-alvo. A eficácia larvicida de Fusarium equiseti e Fusarium proliferatum foi avaliada contra Aedes aegypti. Cepas locais de F. equiseti (MK371718) e F. proliferatum (MK371715) foram isoladas do solo de Changa Manga Forest, Paquistão, usando o método de isca para insetos. Atividade larvicida de dois Fusarium spp. foi testado contra larvas de quarto ínstar de A. aegypti em laboratório, nas concentrações 105, 106, 107 e 108 conídios / ml. Os valores de LC50 para F. equiseti após 24 h, 48 h, 72 h e 96 h de exposição foram registrados como 3,8x 108, 2,9x107, 2,0x107 e 7,1x106 conídios / ml, respectivamente, enquanto os valores de LC50 para F. proliferatum foram registrados como 1,21x108, 9,6 x107, 4,2x107, 2,6x107 conídios / ml, respectivamente, após 24 h, 48 h, 72 h e 96 h de exposição. Os resultados indicam que entre duas cepas de fungos F. equiseti se mostrou mais eficaz em termos de atividade larvicida do que F. proliferatum contra larvas de A. aegypti.


Assuntos
Humanos , Animais , Aedes , Fusarium , Inseticidas/farmacologia , Paquistão , Solo , Extratos Vegetais , Florestas , Mosquitos Vetores , Larva
18.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500302

RESUMO

Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.


Assuntos
Anti-Infecciosos , Chalconas , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Chalconas/farmacologia , Antocianinas , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli
19.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364044

RESUMO

Lactic acid bacteria produce a variety of antibacterial and larvicidal metabolites, which could be used to cure diseases caused by pathogenic bacteria and to efficiently overcome issues regarding insecticide resistance. In the current study, the antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate isolated from Lactiplantibacillus plantarum BCH-1 has been evaluated. Bioactive compounds were extracted by ethyl acetate and were fractionated by gradient column chromatography from crude extract. Based on FT-IR analysis followed by GC-MS and ESI-MS/MS, the active compound was identified to be Bis-(2-ethylhexyl) phthalate. Antibacterial potential was evaluated by disk diffusion against E. coli (12.33 ± 0.56 mm inhibition zone) and S. aureus (5.66 ± 1.00 mm inhibition zone). Larvicidal potency was performed against Culex quinquefasciatus Say larvae, where Bis-(2-ethylhexyl) phthalate showed 100% mortality at 250 ppm after 72 h with LC50 of 67.03 ppm. Furthermore, after 72 h the acetylcholinesterase inhibition was observed as 29.00, 40.33, 53.00, 64.00, and 75.33 (%) at 50, 100, 150, 200, and 250 ppm, respectively. In comet assay, mean comet tail length (14.18 ± 0.28 µm), tail DNA percent damage (18.23 ± 0.06%), tail movement (14.68 ± 0.56 µm), comet length (20.62 ± 0.64 µm), head length (23.75 ± 0.27 µm), and head DNA percentage (39.19 ± 0.92%) were observed at 250 ppm as compared to the control. The current study for the first time describes the promising antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum that would have potential pharmaceutical applications.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Animais , Inseticidas/química , Acetilcolinesterase/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Espectrometria de Massas em Tandem , Escherichia coli , Extratos Vegetais/química , Larva , Antibacterianos/farmacologia , Antibacterianos/análise , Folhas de Planta/química
20.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432060

RESUMO

Mosquitoes, in addition to being a biting nuisance, are vectors of several pathogenic viruses and parasites. As a continuation of our work identifying abundant and/or invasive plant species in Vietnam for use as ecologically friendly pesticidal agents, we obtained the essential oils of Blumea lacera, Blumea sinuata, Emilia sonchifolia, Parthenium hysterophorus, and Sphaeranthus africanus; analyzed the essential oils using gas chromatographic techniques; and screened the essential oils for mosquito larvicidal activity against Aedes aegypti and Aedes albopictus. The most active larvicidal essential oils were B. sinuata, which was rich in thymohydroquinone dimethyl ether (29.4%), (E)-ß-caryophyllene (19.7%), α-pinene (8.8%), germacrene D (7.8%), and α-humulene (4.3%), (24-h LC50 23.4 and 29.1 µg/mL) on Ae. aegypti and Ae. albopictus, respectively, and Emilia sonchifolia, dominated by 1-undecene (41.9%) and germacrene D (11.0%), (24-h LC50 30.1 and 29.6 µg/mL) on the two mosquito species. The essential oils of P. hysterophorus and S. africanus were also active against mosquito larvae. Notably, B. sinuata, P. hysterophorus, and S. africanus essential oils were not toxic to the non-target water bug, Diplonychus rusticus. However, E. sonchifolia essential oil showed insecticidal activity (24-h LC50 48.1 µg/mL) on D. rusticus. Based on these results, B. sinuata, P. hysterophorus, and S. africanus essential oils appear promising for further investigations.


Assuntos
Aedes , Asteraceae , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Vietnã , Óleos de Plantas/química , Mosquitos Vetores , Povo Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA