Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 190: 940-959, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478798

RESUMO

Among the diverse nanomaterials, polymer-based nanocomposites are gained more attention due to their high efficacy, target biological activities, biodegradability and biocompatibility-gum acacia (GA) - a polymer obtained from acacia trees-is considering the multifunctional nanocomposite synthesis. Distinctive Physico-chemical and biocompatibility properties of gum acacia are utilised to prepare a highly stable, biologically active, eco-friendly Nanocomposite. In this current investigation, gum acacia - poly ethylene glycol grafted iron oxide nanocomposite (GA-PEG-IONC) was synthesised by in situ green science principles. The synthesised Nanocomposite was evaluated against the molecular mechanism of urinary tract pathogenic bacterial strains and prostate cancer cells (Pc 3). Nanocomposite prepared in this examination exhibited notable structural, functional stability with nanoarchitecture which was affirmed by Fourier transform infrared spectroscopy (FTIR), electron microscopic studies, atomic force microscopy (AFM), vibrating sample magnetometric analysis (VSM) and X-ray diffraction (XRD), Synthesised Nanocomposite brought about notable antibacterial activity against urinary tract pathogenic strains by recording potential inhibitory effect on the expression of Las R gene. Inhibition of Las R gene expression reduced notable effect on biofilm development. Anticancer activity against prostate cancer cells (Pc3) was investigated by measurement of HOXB13 gene expression level. Inhibition of HOXB13 gene expression by the IONC brought about structural, functional changes. HOXB13 gene expression inhibition reveals a remarkable cytotoxic effect by recording decreased cell viability. Morphometric analysis by phase-contrast and DAPI fluorescence staining demonstrates that the Nanocomposite prompted cell morphology anomalies or apoptotic changes. Nanocomposite treatment brought about a good sign of Apoptosis by recording enhanced caspase 3 and 9 activities, DNA fragmentation and elevated reactive oxygen species generation (ROS). Hemocompatibility studies were carried out to determine the biocompatibility of the Nanocomposite. Spectrophotometric estimation of plasma haemoglobin, microscopic examination of whole blood cells shows the Nanocomposite was not inciting any indication of toxicity. These findings infer that IONC synthesised in the present study is the promising contender for a broad scope of biomedical applications, especially as an antibacterial and anticancer agent.


Assuntos
Compostos Férricos/química , Genes vpr , Goma Arábica/química , Proteínas de Homeodomínio/genética , Nanocompostos/química , Polietilenoglicóis/química , Neoplasias da Próstata/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Biofilmes/efeitos dos fármacos , Caspase 3/metabolismo , Catéteres , Fragmentação do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Química Verde , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Células PC-3 , Filogenia , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Microb Pathog ; 148: 104412, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798672

RESUMO

Pseudomonas aeruginosa- major group of an aerobic bacteria associated with nosocomial and other life threatening infections. Diverse virulence factors produced by P. aeruginosa is due to distinct molecular cell signaling mechanism termed as quorum sensing (QS). Interfering with normal QS mechanism by active biomolecules is an effective strategy for attenuating its virulence. With this objective, the present study is undertaken to evaluate the inhibition of quorum sensing of clinical isolate of P. aeruginosa by repression of Las R-a transcriptional regulator for QS by ethanol extract of Terminalia chebula and Ficus racemosa. Las R repression by the plant extracts was measured in inhibition of various virulence factors like biofilm, pyocyanin production, total proteolytic activity, swarming and twisting motility. Fabrication of the extracted metabolites on the wound dressing and its effect on anti bacterial activity was also investigated. Compatibility of plant extracts on zebra fish development and blood cells was further studied. P. aeruginosa was isolated from the post operative patient and the isolated pure culture was identified by cultural, biochemical, molecular characteristics. Active principles of both the plants were readily extracted in ethanol and effectively repressed the expression of Las R. Both the tested plant extracts effectively repressed Las R expression which in turn affect the production of various virulence factors like biofilm formation, pyocyanin production, swarming motility, twisting motility, total proteolytic activity, cell adhesion and signaling molecule acyl honoserine lactone (AHL) production. Plant extract treatment brought about drastic reduction of all the tested virulence factors and AHL production. Extracted metabolites were fabricated on the wound dressing material adopting simple dip or immersion method reveals uniform coating, effective embedding of phytochemicals with the fibers and retained the anti bacterial activity against P. aeruginosa. Biocompatibility studies with zebra fish model shows both the tested plant extracts treatment was not exhibited any sign of toxicity on the developmental stages of Zebra fish. Hemolysis and changes in anti oxidative enzymes were not recorded in the plant extracts treated blood which demonstrated the best biocompatibility of the tested plant extracts. These results shows that the presence of potential phytochemicals in the ethanolic extract of Terminalia chebula and Ficus racemosa effectively represses the Las R followed by inhibition of quorum sensing mediated virulence factors production may be useful in the lead of anti bacterial drugs.


Assuntos
Antibacterianos/farmacologia , Ficus/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Terminalia/química , Animais , Biofilmes , Humanos , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA