RESUMO
Passive heat therapy is characterized by exposure to a high environmental temperature for a brief period. There are several types of passive heat therapy which include hot tubs, Waon therapy, hydrotherapy, sanarium, steam baths, infrared saunas and Finnish saunas. The most commonly used and widely studied till date are the Finnish saunas, which are characterized by high temperatures (ranging from 80-100°C) and dry air with relative humidity varying from 10-20%. The goal of this review is to provide a summary of the current evidence on the impact of passive heat therapies particularly Finnish saunas on various health outcomes, while acknowledging the potential of these therapies to contribute to the extension of healthspan, based on their demonstrated health benefits and disease prevention capabilities. The Finnish saunas have the most consistent and robust evidence regarding health benefits and they have been shown to decrease the risk of health outcomes such as hypertension, cardiovascular disease, thromboembolism, dementia, and respiratory conditions; may improve the severity of musculoskeletal disorders, COVID-19, headache and flu, while also improving mental well-being, sleep, and longevity. Finnish saunas may also augment the beneficial effects of other protective lifestyle factors such as physical activity. The beneficial effects of passive heat therapies may be linked to their anti-inflammatory, cytoprotective and anti-oxidant properties and synergistic effects on neuroendocrine, circulatory, cardiovascular and immune function. Passive heat therapies, notably Finnish saunas, are emerging as potentially powerful and holistic strategies to promoting health and extending the healthspan in all populations.
RESUMO
Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, Pi ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability.
Assuntos
Fósforo , Plantas , Humanos , Austrália , Fósforo/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Nitrogênio/metabolismo , Solo , Folhas de Planta/metabolismoRESUMO
Sodium pyruvate is a natural metabolite commonly used in biological fields, including cell culture. This study investigated the effects of sodium pyruvate on the lifespan and other physiological characters of Drosophila melanogaster, by measuring feeding, fecundity, and spontaneous activity. The results indicated that 0.2 mol/L of sodium pyruvate increased the median lifespan of female flies by 8.33%. Moreover, the group sleep duration of female flies significantly increased by 53.98% when exposed to the sodium pyruvate concentration. However, the intake of sodium pyruvate did not significantly affect the fecundity or food intake of female flies. Our results also show that the effect of extending lifespan and increasing sleep time was dose-dependent and sex-specific. Our data provides the role of sodium pyruvate as an insect culture additive by enhancing survival.
Assuntos
Drosophila , Longevidade , Masculino , Feminino , Animais , Drosophila melanogaster/fisiologia , Dieta , Suplementos Nutricionais , Sono , Piruvatos/farmacologia , Sódio/farmacologiaRESUMO
BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.
Assuntos
Artemisia , Drosophila melanogaster , Masculino , Feminino , Animais , Drosophila melanogaster/genética , Antioxidantes/farmacologia , Longevidade , Envelhecimento , Suplementos NutricionaisRESUMO
Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, jam, and liqueur. Blackcurrant extract is known to relieve cells from DNA damage caused by hydrogen peroxide (H2 O2 ), methyl methane sulfonate (MMS), and ultraviolet (UV) radiation. We found that blackcurrant extract (BCE) stabilizes the ribosomal RNA gene cluster (rDNA), one of the most unstable regions in the genome, through repression of noncoding transcription in the intergenic spacer (IGS) which extended the lifespan in budding yeast. Reduced formation of extrachromosomal circles (ERCs) after exposure to fractionated BCE suggested that acidity of the growth medium impacted rDNA stability. Indeed, alteration of the acidity of the growth medium to pH ~4.5 by adding HCl increased rDNA stability and extended the lifespan. We identified RPD3 as the gene responsible for this change, which was mediated by the RPD3L histone deacetylase complex. In mammals, as inflammation sites in a tissue are acidic, DNA maintenance may be similarly regulated to prevent genome instability from causing cancer.
Assuntos
Longevidade , Transcrição Gênica , Animais , Genes de RNAr , DNA Ribossômico/genética , Extratos Vegetais , MamíferosRESUMO
Plant polyphenols are characterized by a wide range of biological activities, including antioxidant properties, and have a high geroprotective potential. The purpose of this work was to investigate the effect of the extract of rowan berries (Sorbus aucuparia L.) on the lifespan and stress resistance of Drosophila melanogaster with the identification of possible mechanisms of its biological activity. It has been established that an ethanol extract of S. aucuparia berries, the main components of which are rutin and cyanidin-3-rutinoside, has a pronounced antioxidant activity in vitro. At the same time, treatment with rowan berry extract increased the resistance of D. melanogaster males to starvation, but reduced resistance to hyperthermia. In females, the extract reduced resistance to oxidative stress but increased resistance to hyperthermia. The effects of rowan berry extract on longevity depended both on its concentration and on the sex of fruit flies. In response to treatment with rowan berry extract, D. melanogaster males and females showed slight differences in the background level of expression of cellular stress response genes, including heat shock genes (hsp27, hsp68, and hsp83), oxidative stress resistance genes (hif1, nrf2, and sod1), circadian rhythm genes (clk and per), and the longevity gene sirt1, which may explain the differences in the observed effects.
Assuntos
Antioxidantes , Sorbus , Animais , Feminino , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sorbus/metabolismo , Frutas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Extratos Vegetais/farmacologiaRESUMO
PURPOSE: Sacral nerve neuromodulation (SNM) is a safe and effective therapy for the management of fecal and/or urinary incontinence. The generators InterStim™ and InterStim™ II (Medtronic™) are non-rechargeable active implantable medical devices with a limited lifespan. The aims of this study were to assess the generators' median lifespan for all indications and the long-term hospital costs of the therapy. METHODS: This was a retrospective monocentric study that included 215 patients aged over 18 years who were treated by SNM for fecal incontinence and/or urinary incontinence. Lifespan was considered as the amount of time between definitive implantation and observed battery depletion by the surgeon and was assessed by the Kaplan-Meier method. Costs were assessed according to the activity-based pricing of the French public health care system. RESULTS: The median observed lifetime of stimulators implanted in our center was 7.29 years and 5.9 years for InterStim™ and InterStim™ II, respectively. The difference observed between the two generations was statistically significant. The modelling of primary implantation and renewal costs allowed us to observe that the decrease in the lifetime of Interstim™ II is associated with an increase in hospital costs over time. The retrospective study design is one limitation and we did not take into consideration stimulation's settings. CONCLUSIONS: The InterStim™ II lifespan is shorter than the first-generation device. This is associated with an increase of the long-term hospital costs. Additional information about the new neuromodulator will be required to choose the most appropriate IPG for the patient while optimizing the costs.
Assuntos
Terapia por Estimulação Elétrica , Incontinência Urinária , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Longevidade , Custos Hospitalares , HospitaisRESUMO
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
RESUMO
BACKGROUND: Environmental stress resistance is still a bottleneck for economical process for l-lactic acid fermentation. Chronological lifespan (CLS) extension has represented a promising strategy for improving stress resistance of microbial cell factories. MAIN METHODS AND MAJOR RESULTS: In this study, addition of anti-aging drug cysteine, a kind of extending CLS of microbial cell factories, was systematically evaluated on cell viability and l-lactic acid production in Bacillus coagulans CICC 23843. The results revealed that 16 mm l-cysteine supplement significantly improved l-lactic acid titer in B. coagulans. The enhanced total antioxidant capacity (T-AOC) and key enzymes activities involving in glycolytic pathway as well as differentially expressed genes involved in cysteine synthesize and cysteine precursor synthesize pathways, and fatty acid degradation pathway may help to further understand the relative mechanism of l-cysteine effect on improving l-lactic acid accumulation. Finally, based on 16 mm l-cysteine supplement, a final l-lactic acid titer of 130.5 g L-1 with l-lactic acid productivity of 4.07 g L-1 h-1 and the conversion rate of 0.94 g g-1 total sugar was achieved in a 5 L bioreactor. CONCLUSIONS AND IMPLICATIONS: This study provided a valuable option for engineering lactic acid bacteria lifespan for enhancement of lactic acid yield.
Assuntos
Bacillus coagulans , Ácido Láctico , Fermentação , Cisteína/metabolismo , Bacillus coagulans/metabolismo , Reatores BiológicosRESUMO
OBJECTIVE: To observe the anti-aging effects of moxibustion on age-related alterations in middle-aged mice. METHODS: Thirty, 9-month-old, male ICR mice were randomly divided into the moxibustion and control groups (N = 15). Mice in the moxibustion group were given mild moxibustion at the Guanyuan acupoint for 20 minutes every other day. After 30 treatments, neurobehavior tests, lifespan, gut microbiota composition and splenic gene expression were observed in the mice. RESULTS: Moxibustion improved the locomotor activity as well as motor function, activated the SIRT1-PPARα signaling pathway, ameliorated age-related alterations in gut microbiota, and affected the expression of genes related to energy metabolism in spleen. CONCLUSION: Moxibustion ameliorated age-related alterations in neurobehavior and gut microbiota in middle-aged mice.
RESUMO
Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed ß-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.
Assuntos
Dendrobium , Animais , Caenorhabditis elegans , Peróxido de Hidrogênio , Polissacarídeos/farmacologia , Antioxidantes/farmacologiaRESUMO
With an increasing aging population, the burden of age-related diseases magnifies. To alleviate this burden, geroprotection has been an area of intense research focus with the development of pharmacological interventions that target lifespan and/or healthspan. However, there are often sex differences, with compounds mostly tested in male animals. Given the importance of considering both sexes in preclinical research, this neglects potential benefits for the female population, as interventions tested in both sexes often show clear sexual dimorphisms in their biological responses. To further understand the prevalence of sex differences in pharmacological geroprotective intervention studies, we performed a systematic review of the literature according to the PRISMA guidelines. Seventy-two studies met our inclusion criteria and were classified into one of five subclasses: FDA-repurposed drugs, novel small molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins, or other dietary supplements. Interventions were analyzed for their effects on median and maximal lifespan and healthspan markers, including frailty, muscle function and coordination, cognitive function and learning, metabolism, and cancer. With our systematic review, we found that twenty-two out of sixty-four compounds tested were able to prolong both lifespan and healthspan measures. Focusing on the use of female and male mice, and on comparing their outcomes, we found that 40% of studies only used male mice or did not clarify the sex. Notably, of the 36% of pharmacologic interventions that did use both male and female mice, 73% of these studies showed sex-specific outcomes on healthspan and/or lifespan. These data highlight the importance of studying both sexes in the search for geroprotectors, as the biology of aging is not the same in male and female mice. Systematic Review Registration: [website], identifier [registration number].
RESUMO
Panax ginseng C. A. Meyer (ginseng), a traditional Chinese herb, is usually used to improve health and increase anti-aging activity for human. Polysaccharides are bioactive components of ginseng. Herein, using Caenorhabditis elegans as a model, we discovered a ginseng-derived rhamnogalacturonan I (RG-I) pectin WGPA-1-RG promoted longevity via TOR signalling pathway with transcription factors FOXO/DAF-16 and Nrf2/SKN-1 accumulated in the nucleus, where they activated target genes. And the WGPA-1-RG-mediated lifespan extension was dependent on endocytosis, rather than a bacterial metabolic process. Glycosidic linkage analyses combined with arabinose- and galactose-releasing enzyme hydrolyses identified the RG-I backbone of WGPA-1-RG was primarily substituted with α-1,5-linked arabinan, ß-1,4-linked galactan and arabinogalactan II (AG-II) side chains. Feeding worms with the WGPA-1-RG-derived fractions which lost distinct structural elements by enzymatic digestions, we found the arabinan side chains prominently contributed to the longevity-promoting activity of WGPA-1-RG. These findings provide a novel ginseng-derived nutrient that potentially increases human longevity.
Assuntos
Caenorhabditis elegans , Panax , Animais , Humanos , Longevidade , Panax/química , Pectinas/farmacologia , Pectinas/químicaRESUMO
Patient-derived organoids (PDO) are a new biomedical research model that can reconstruct phenotypic and genetic characteristics of the original tissue and are useful for research on pathogenesis and drug screening. To introduce the progression in this field, we review the key factors of constructing organoids derived from epithelial tissues and cancers, covering culture medium and matrix, morphological characteristics, genetic profiles, high-throughput drug screening, and application potential. We also discuss the co-culture system of cancer organoids with tumor microenvironment (TME) associated cells. The co-culture system is widely used in evaluating crosstalk of cancer cells with TME components, such as fibroblasts, endothelial cells, immune cells, and microorganisms. The article provides a prospective for standardized cultivation mode, automatic morphological evaluation, and drug sensitivity screening using high-throughput methods.
Assuntos
Células Endoteliais , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Organoides/patologia , Microambiente TumoralRESUMO
Linoleic acid (LA, omega-6), an essential polyunsaturated fatty acid, is supplied by vegetable oils such as corn, sunflower and soybean. Supplementary LA in infants and children is required for normal growth and brain development, but has also been reported to induce brain inflammation and neurodegenerative diseases. This controversial role of LA development requires further investigation. Our study utilized Caenorhabditis elegans (C. elegans) as a model to clarify the role of LA in regulating neurobehavioral development. A mere supplementary quantity of LA in C. elegans larval stage affected the worm's locomotive ability, intracellular ROS accumulation and lifespan. We found that more serotonergic neurons were activated by supplementing LA above 10 µM thereby promoting locomotive ability with upregulation of serotonin-related genes. Supplementation with LA above 10 µM also inhibited the expression of mtl-1, mtl-2 and ctl-3 to accelerate oxidative stress and attenuate lifespan in nematodes; however, enhancement of stress-related genes such as sod-1, sod-3, mtl-1, mtl-2 and cyp-35A2 by supplementary LA under 1 µM decreased oxidative stress and increased the worm's lifespan. In conclusion, our study reveals that supplementary LA possesses both pros and cons in worm physiology and provides new suggestions for LA intake administration in childhood.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Estresse Oxidativo , Longevidade/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
Inflammation, the body's protective response to injury and infection, plays a critical role in physical and mental health outcomes. Elevated chronic inflammation is implicated as a predictor of disease and all-cause mortality and is linked with several psychological disorders. Given that social support is associated with lower rates of mortality and psychopathology, the links between inflammation and social support are well-studied. However, there are many significant gaps related to both the specificity and generalizability of extant findings. There is a paucity of research on the association between social support and inflammation within different racial groups. Additionally, more research is warranted to understand whether social support from different sources uniquely contributes to inflammation, above and beyond other sources of support. Thus, the current study examined whether perceived emotional social support during adolescence predicted inflammation during adulthood within several racial groups. Participants (n = 3,390) were drawn from the National Longitudinal Study of Adolescent to Adult Health (Add Health), identified as either Asian, Black, Latinx, White, or Multiracial, and had complete data on study variables. Consistent with our hypotheses and previous research, greater perceived support during adolescence was associated with lower inflammation during adulthood, but only for White participants. Contrastingly, greater perceived support during adolescence was associated with higher inflammation during adulthood for individuals who identified as Asian, Latinx, Black, or Multiracial. Furthermore, patterns of social support and inflammation within each racial group varied by relationship type. These results highlight the importance of studying relationship processes and health outcomes within racial groups to understand their unique, lived experiences.
Assuntos
Inflamação , Grupos Raciais , Apoio Social , Adolescente , Adulto , Humanos , População Negra , Inflamação/mortalidade , Inflamação/psicologia , Estudos Longitudinais , Grupos Raciais/psicologia , Apoio Social/psicologia , Doença Crônica/mortalidade , Doença Crônica/psicologiaRESUMO
Glucosylglycerol (GG) is an osmolyte found in a few bacteria (e.g., cyanobacteria) and plants grown in harsh environments. GG protects microbes and plants from salinity and desiccation stress. In the industry, GG is synthesized from a combination of ADP-glucose and glycerol-3-phosphate in a condensation reaction catalyzed by glucosylglycerol phosphate synthase. Proline, on the other hand, is an amino acid-based osmolyte that plays a key role in cellular reprograming. It functions as a protectant and a scavenger of reactive oxygen species. Studies on lifespan extension have focused on the use of Saccharomyces cerevisiae. Rhodosporidium toruloides, also known as Rhodotorula toruloides, is a basidiomycetous oleaginous yeast known to accumulate lipids to more than 70% of its dry cell weight. The oleaginous red yeast (R. toruloides) has not been intensely studied in the lifespan domain. We designed this work to investigate how GG and proline promote the longevity of this red yeast strain. The results obtained in our study confirmed that these molecules increased R. toruloides' viability, survival percentage, and lifespan upon supplementation. GG exerts the most promising effects at a relatively high concentration (100 mM), while proline functions best at a low level (2 mM). Elucidation of the processes underlying these favorable responses revealed that GG promotes the yeast chronological lifespan (CLS) through increased catalase activity, modulation of the culture medium pH, a rise in ATP, and an increase in reactive oxygen species (ROS) accumulation (mitohormesis). It is critical to understand the mechanisms of these geroprotector molecules, particularly GG, and the proclivity of its lifespan application; this will aid in offering clarity on its potential application in aging research.
Assuntos
Produtos Biológicos , Longevidade , Saccharomyces cerevisiae , Prolina , Espécies Reativas de Oxigênio , FosfatosRESUMO
BACKGROUND: How the functional interactions of the basal ganglia/thalamus with the cerebral cortex and the cerebellum change over the adult lifespan in movie-watching and resting-state is less clear. PURPOSE: To investigate the functional changes in the organization of the human cortical-subcortical functional networks over the adult lifespan using movie-watching and resting-state fMRI data. STUDY TYPE: Cohort. SUBJECTS: Healthy 467 adults (cross-sectional individuals aged 18-88 years) from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.com). FIELD STRENGTH/SEQUENCE: fMRI using a gradient-echo echo-planar imaging (EPI) sequence at 3 T. ASSESSMENT: Functional connectivities (FCs) of the subcortical subregions (i.e. the basal ganglia and thalamus) with both the cerebral cortex and cerebellum were examined in fMRI data acquired during resting state and movie-watching. And, fluid intelligence scores were also assessed. STATISTICAL TESTS: Student's t-tests, false discovery rate (FDR) corrected. RESULTS: As age increased, FCs that mainly within the basal ganglia and thalamus, and between the basal ganglia/thalamus and cortical networks (including the dorsal attention, ventral attention, and limbic networks) were both increased/decreased during movie-watching and resting states. However, FCs showed a state-dependent component with advancing age. During the movie-watching state, the FCs between the basal ganglia/thalamus and cerebellum/frontoparietal control networks were mainly increased with age, and the FCs in the somatomotor network were decreased with age. During the resting state, the FCs between the basal ganglia/thalamus and default mode/visual networks were mainly increased with age, and the FCs in the cerebellum were mainly decreased with age. Moreover, inverse relationships between FCs and fluid intelligence were mainly found in these network regions. DATA CONCLUSION: Our study may suggest that changes in cortical-subcortical functional networks across the adult lifespan were both state-dependent and stable traits, and that aging fMRI studies should consider the effects of both physiological characteristics and individual situations. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.
Assuntos
Gânglios da Base , Longevidade , Adulto , Humanos , Estudos Transversais , Gânglios da Base/diagnóstico por imagem , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Tálamo , Vias Neurais , Mapeamento Encefálico/métodosRESUMO
BACKGROUND: The pleasantness of a gentle and slow, namely affective, touch experienced in interpersonal interactions motivates social closeness. In anorexia nervosa (AN), independent evidence suggests lower pleasantness of affective touch, as well as social withdrawal. We aim to probe both the experience of affective touch and its possible association with social anhedonia and lifespan experiences of affective bodily contacts in AN. METHODS: The pleasantness of affective and non-affective touch was compared between fourteen women with AN and fourteen healthy women. Stimuli were traditionally delivered with a brush, with the experimenter's hand, as novelty, and with a stick, as control. The pleasantness of imagined and real touch was probed. Self-report questionnaires assessed social anhedonia and lifespan experiences of affective touch. RESULTS: A preserved pleasantness of affective touch emerged in AN in both the imagery and real task, despite higher social anhedonia and less lifespan experience of affective touch than healthy women. LIMITATIONS: Affective touch involves loved ones; thus, the experimenter's touch may not resemble real-life interactions. Future research may take advantage of imagery procedures to solve this issue. CONCLUSIONS: Body-oriented therapy for AN recognizes touch as a therapeutic tool: ascertaining how touch is experienced is crucial to maximize rehabilitative outcomes. Furthermore, clarifying the possible interplay between interpersonal difficulties in AN and affective touch is especially relevant considering the possible role of the attachment style, which is intensively debated in AN, on affective touch.
Assuntos
Anorexia Nervosa , Percepção do Tato , Humanos , Feminino , Tato , Anorexia Nervosa/psicologia , Longevidade , AnedoniaRESUMO
BACKGROUND: Older adults process speech differently, but it is not yet clear how aging affects different levels of processing natural, continuous speech, both in terms of bottom-up acoustic analysis and top-down generation of linguistic-based predictions. We studied natural speech processing across the adult lifespan via electroencephalography (EEG) measurements of neural tracking. GOALS: Our goals are to analyze the unique contribution of linguistic speech processing across the adult lifespan using natural speech, while controlling for the influence of acoustic processing. Moreover, we also studied acoustic processing across age. In particular, we focus on changes in spatial and temporal activation patterns in response to natural speech across the lifespan. METHODS: 52 normal-hearing adults between 17 and 82 years of age listened to a naturally spoken story while the EEG signal was recorded. We investigated the effect of age on acoustic and linguistic processing of speech. Because age correlated with hearing capacity and measures of cognition, we investigated whether the observed age effect is mediated by these factors. Furthermore, we investigated whether there is an effect of age on hemisphere lateralization and on spatiotemporal patterns of the neural responses. RESULTS: Our EEG results showed that linguistic speech processing declines with advancing age. Moreover, as age increased, the neural response latency to certain aspects of linguistic speech processing increased. Also acoustic neural tracking (NT) decreased with increasing age, which is at odds with the literature. In contrast to linguistic processing, older subjects showed shorter latencies for early acoustic responses to speech. No evidence was found for hemispheric lateralization in neither younger nor older adults during linguistic speech processing. Most of the observed aging effects on acoustic and linguistic processing were not explained by age-related decline in hearing capacity or cognition. However, our results suggest that the effect of decreasing linguistic neural tracking with advancing age at word-level is also partially due to an age-related decline in cognition than a robust effect of age. CONCLUSION: Spatial and temporal characteristics of the neural responses to continuous speech change across the adult lifespan for both acoustic and linguistic speech processing. These changes may be traces of structural and/or functional change that occurs with advancing age.