Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Appl Biomater Funct Mater ; 22: 22808000241235442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497242

RESUMO

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.


Assuntos
Berberina , Carcinoma , Curcumina , Neoplasias Pulmonares , Humanos , Apoptose , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Carcinoma/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Quimioterapia Combinada , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanomedicina , Polissorbatos/farmacologia
2.
Int Immunopharmacol ; 132: 111948, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554445

RESUMO

Cancer is attributed to uncontrolled cell growth and is among the leading causes of death with no known effective treatment while complex tumor microenvironment (TME) and multidrug resistance (MDR) are major challenges for developing an effective therapeutic strategy. Advancement in cancer immunotherapy has been limited by the over-activation of the host immune response that ultimately affects healthy tissues or organs and leads to a feeble response of the patient's immune system against tumor cells. Besides, traditional herbal medicines (THM) have been well-known for their essential role in the treatment of cancer and are considered relatively safe due to their compatibility with the human body. Yet, poor solubility, low bio-availability, and lack of understanding about their pathophysiological mechanism halt their clinical application. Moreover, considering the complex TME and drug resistance, the most precarious and least discussed concerns for developing THM-based nano-vaccination, are identification of specific biomarkers for drug inhibitory protein and targeted delivery of bioactive ingredients of THM on the specific sites in tumor cells. The concept of THM-based nano-vaccination indicates immunomodulation of TME by THM-based bioactive adjuvants, exerting immunomodulatory effects, via targeted inhibition of key proteins involved in the metastasis of cancer. However, this concept is at its nascent stage and very few preclinical studies provided the evidence to support clinical translation. Therefore, we attempted to capsulize previously reported studies highlighting the role of THM-based nano-medicine in reducing the risk of MDR and combating complex tumor environments to provide a reference for future study design by discussing the challenges and opportunities for developing an effective and safe therapeutic strategy against cancer.


Assuntos
Vacinas Anticâncer , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Imunoterapia/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Nanopartículas/química , Nanovacinas
3.
BMC Complement Med Ther ; 24(1): 93, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365729

RESUMO

BACKGROUND: Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS: The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS: Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 µg, 100 µg, and 500 µg of punicalagin combined with antimicrobials i.e., aminoglycoside, ß-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 µg/mL/30, 100, 500 µg/mL of punicalagin) combinations. CONCLUSIONS: The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.


Assuntos
Anti-Infecciosos , Taninos Hidrolisáveis , Punica granatum , Antibacterianos/farmacologia , Polifenóis , Enterobacteriaceae , Escherichia coli , Ágar , Metanol , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos
4.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165647

RESUMO

The emergence of Multidrug resistance (MDR) in human pathogens has defected the existing antibiotics and compelled us to understand more about the basic science behind alternate anti-infective drug discovery. Soon, proteome analysis identified AcrB efflux pump protein as a promising drug target using plant-driven phytocompounds used in traditional medicine systems with lesser side effects. Thus, the present study aims to explore the novel, less toxic, and natural inhibitors of Klebsiella pneumoniae AcrB pump protein from 69 Zingiber officinale phyto-molecules available in the SpiceRx database through computational-biology approaches. AcrB protein's homology-modelling was carried out to get a 3D structure. The multistep-docking (HTVS, SP, and XP) were employed to eliminate less-suitable compounds in each step based on the docking score. The chosen hit-compounds underwent induced-fit docking (IFD). Based on the XP GScore, the top three compounds, epicatechin (-10.78), 6-gingerol (-9.71), and quercetin (-9.09) kcal/mol, were selected for further calculation of binding free energy (MM/GBSA). Furthermore, the short-listed compounds were assessed for their drug-like properties based on in silico ADMET properties and Pa, Pi values. In addition, the molecular dynamics simulation (MDS) studies for 250 ns elucidated the binding mechanism of epicatechin, 6-gingerol, and quercetin to AcrB. From the dynamic binding free energy calculations using MM/PBSA, 6-gingerol exhibited a strong binding affinity towards AcrB. Further, the 6-gingerol complex's energy fluctuation was observed from the free energy landscape. In conclusion, 6-gingerol has a promising inhibiting potential against the AcrB efflux pump and thus necessitates further validation through in vitro and in vivo experiments.Communicated by Ramaswamy H. Sarma.

5.
Eur J Med Chem ; 265: 116083, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150960

RESUMO

Because antimicrobial peptides (AMPs) often exhibit broad-spectrum bactericidal potency, we sought to develop peptide-based antimicrobials for potential clinical use against drug-resistant pathogens. To accomplish this goal, we first optimized the amino acid sequence of a broad-spectrum AMP known as Tilapia Piscidin 4 (TP4). Then, we used the optimized sequence to create a pair of heterochiral variants (TP4-α and TP4-ß) with different percentages of D-enantiomers, as poly-L peptides often exhibit poor pharmacokinetic profiles. The conformations of the peptide pair exhibited inverted chirality according to CD and NMR spectroscopic analyses. Both heterochiral peptides displayed enhanced stability and low hemolysis activities. Irrespective of their different d-enantiomer contents, both heterochiral peptides exhibited bactericidal activities in the presence of human serum or physiological enzymes. However, the peptide with higher d-amino acid content (TP4-ß) caused better bacterial clearance when tested in mice infected with NDM-1 K. pneumoniae. In addition, we observed a relatively higher hydrogen bonding affinity in a simulation of the interaction between TP4-ß and a model bacterial membrane. In sum, our results demonstrate that the current design strategy may be applicable for development of new molecules with enhanced stability and in vivo antimicrobial activity.


Assuntos
Anti-Infecciosos , Tilápia , Humanos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sequência de Aminoácidos , Testes de Sensibilidade Microbiana
6.
Microbes Infect ; 26(3): 105279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128751

RESUMO

Tuberculosis is a contagious bacterial ailment that primarily affects the lungs and is brought on by the bacterium Mycobacterium tuberculosis (MTB). An antimycobacterial medication called bedaquiline (BQ) is specified to treat multidrug-resistant tuberculosis (MDR-TB). Despite its contemporary use in clinical practice, the mutations (D32 A/G/N/V/P) constrain the potential of BQ by causing transitions in the structural conformation of the atpE subunit-c after binding. In this study, we have taken the benzylisoquinoline alkaloids from thalictrum foliolosum due to its antimicrobial activity reported in prior literature. We used an efficient and optimized structure-based strategy to examine the wild type (WT) and mutated protein upon molecule binding. Our results emphasize the drastic decline in BQ binding affinity of mutant and WT atpE subunit-c complexes compared to thalirugidine (top hit) from thalictrum foliolosum. The decrease in BQ binding free energy is due to electrostatic energy because nearly every atom in a macromolecule harbors a partial charge, and molecules taking part in molecular recognition will interact electrostatically. Similarly, the high potential mean force of thalirugidine than BQ in WT and mutant complexes demonstrated the remarkable ability to eradicate mycobacteria efficiently. Furthermore, the Alamar blue cell viability and ATP determination assay were performed to validate the computational outcomes in search of novel antimycobacterial. Upon closer examination of the ATP determination assay, it became apparent that both BQ and thalirugidine showed similar reductions in ATP levels at their respective MICs, presenting a potential common mechanism of action.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Plantas Medicinais , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Trifosfato de Adenosina
7.
Front Oncol ; 13: 1322875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125945

RESUMO

Introduction: Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods: The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results: First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.

8.
J Adv Vet Anim Res ; 10(3): 545-553, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969791

RESUMO

Objective: This study sought to determine the occurrence, molecular identification, antimicrobial-resistant trends, and gene distribution of Staphylococcus aureus in pet cats and their owners' hand swabs. Materials and Methods: From different places and clinics in Mymensingh and Dhaka, 168 pet cat samples and 42 hand swab samples from cat owners were obtained. The organisms were scrutinized by assessing the outcomes using conventional and molecular techniques. The disc diffusion technique was applied to find the resistance pattern against 12 antibiotics, and genes were discovered by targeting specific genes using PCR. Results: The occurrence of pathogenic S. aureus in pet cats was 7.74%, while it was 9.50% in pet owners' hand swabs, and 25.0% of the pet owner's hand swabs contained these genes. Staphylococcus aureus was utterly resistant to amoxicillin, ampicillin, cefixime, erythromycin, and imipenem in both pet cat and hand swabs of pet owner samples. All S. aureus isolates had a multidrug-resistant phenotype, and 1 from pet cats (O19) and 1 from pet owner hand swabs (H9) were resistant to all 12 antibiotics in the 7 antimicrobial classes. Several antibiotic-resistance genes were detected by PCR. Conclusion: The study confirmed multidrug-resistant pathogenic S. aureus in pet cats and their owners in Bangladesh, indicating a major health risk to both people and cats. Thus, a holistic and integrated one-health approach between veterinary and medical specialists is needed to mitigate the global distribution of these zoonotic antibiotic-resistant S. aureus strains.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38031773

RESUMO

Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.

10.
Saudi Med J ; 44(12): 1222-1231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016738

RESUMO

Multidrug-resistant (MDR) bacteria constitute one of the most serious global health threats. The increasing incidence rate of bacterial infections caused by MDR strains and the decrease in the number of newly developed antibiotics have prompted the scientific community to search for alternatives. One such alternative is the use of bacteriophages. In this review, we discuss the most critical MDR organisms, including Acinetobacter baumanni, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus The efficacy of phage therapy against MDR bacteria is also discussed. We included studies from the last 10 years that examined the efficacy of phage therapy against MDR pathogens. In addition, this review highlights the effect of bacteriophages against bacterial biofilms. The existing knowledge indicates that phage therapy is a potential therapeutic strategy against MDR bacteria. However, the adverse effects of phage therapy, such as toxicity, and the emergence of phage resistance have not yet been resolved.


Assuntos
Infecções Bacterianas , Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Humanos , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Saudi Pharm J ; 31(11): 101819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860687

RESUMO

Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.

12.
Front Cell Infect Microbiol ; 13: 1265027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790910

RESUMO

Introduction: There is an urgent need to develop therapeutic options for biofilm-producing Staphylococcus aureus (S. aureus). Therefore, the renewed interest in essential oils (EOs), especially carvacrol, linalool and eugenol, has attracted the attention of our research group. Methods: Multidrug resistance and multivirulence profiles in addition to biofilm production of S. aureus strains isolated from cows with mastitis were evaluated using both phenotypic and genotypic methods. The antimicrobial and antibiofilm activities of EOs were tested using both in vitro and molecular docking studies. Moreover, the interactions between commonly used antibiotics and the tested EOs were detected using the checkerboard method. Results: We found that all our isolates (n= 37) were biofilm methicillin resistant S. aureus (MRSA) producers and 40.5% were vancomycin resistant S. aureus (VRSA). Unfortunately, 73 and 43.2% of the recovered MRSA isolates showed multidrug resistant (MDR) and multivirulence patterns, respectively. The antimicrobial activities of the tested EOs matched with the phenotypic evaluation of the antibiofilm activities and molecular docking studies. Linalool showed the highest antimicrobial and antibiofilm activities, followed by carvacrol and eugenol EOs. Fortunately, synergistic interactions between the investigated EOs and methicillin or vancomycin were detected with fractional inhibitory concentration index (FICI) values ≤ 0.5. Moreover, the antimicrobial resistance patterns of 13 isolates changed to sensitive phenotypes after treatment with any of the investigated EOs. Treatment failure of bovine mastitis with resistant S. aureus can be avoided by combining the investigated EOs with available antimicrobial drugs. Conclusion: We hope that our findings can be translated into a formulation of new pharmaceutical dosage forms against biofilm-producing S. aureus pathogens.


Assuntos
Mastite Bovina , Staphylococcus aureus Resistente à Meticilina , Óleos Voláteis , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/genética , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Eugenol , Mastite Bovina/tratamento farmacológico , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Testes de Sensibilidade Microbiana
13.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895854

RESUMO

The increasing disparity between antimicrobial resistance (AMR) and the development of new antimicrobials continues to pose a significant global health concern. However, plant extracts have shown promise in combating this issue either through their inherent antimicrobial activity or by serving as potential reservoirs of effective antimicrobial compounds. These compounds have the ability to target pathogenic biofilms and inhibit the production of extended-spectrum ß -lactamases (ESBLs). However, there is limited research available on the antibacterial properties of goldenrod extract. Thus, the objective of this study was to investigate the impact of S. virgaurea (SV) extract on the viability and ability to form biofilms of ESBL-Pseudomonas aeruginosa (P. aeruginosa). A cross-sectional study was conducted from August 2022 to March 2023. The broth microdilution method was employed to determine the minimum inhibitory concentration (MIC) of the (SV) extract. Subsequently, the minimum bactericidal concentration (MBC) was determined based on the MIC values obtained. The antibiotic susceptibility of bacteria was evaluated using the Kirby disk diffusion assay and an Antimicrobial Susceptibility Testing (AST) card in conjunction with the Vitek-2 compact system. Biofilm formation was evaluated using Congo red and a 96-well Elisa plate, while the presence of extended-spectrum ß-lactamases (ESBLs) was estimated by measuring the reduction of nitrocefin at a wavelength of 390 nm. In addition, treatment of biofilm and ESBL activity with SV extract using 96-well Elisa plate and nitrocefin hydrolyzing, respectively. The resistance rates of P. aeruginosa isolates to the tested antibiotics were as follows: Levofloxacin 33%, Ciprofloxacin 40%, Amikacin 49%, Meropenem 50%, Cefepime 70%, Ceftazidime 75%, Cefotaxime 85%, Piperacillin-Tazobactam 90%, Amoxiclav 97%, Ampicillin 99%, Ceftriaxone 100%. The prevalence of MDR-P. aeruginosa, XDR-P. aeruginosa, PDR-P. aeruginosa and non-MDR-PA were 40% (n = 40), 7% (n = 7), 3% (n = 3) and 50% (n = 50), respectively. From the GC-MS results, it was observed that the presence of Octadecane, Clioquinol, Glycerol tricaprylate, hexadecanoic acid, cis-13-octadecenoic acid, oleic acid and Propanamide were the major components in the Solidago extract. In the determination of plant crude extracts, the values ranged between 0.25 and 64 mg/mL against bacteria. The resulting activity of the extract showed a significant statistical relationship at a p-value ≤ 0.01 against ESBL production and biofilm formation in P. aeruginosa. The S. virgaurea extract exhibited effectiveness in inhibiting biofilm formation and combating P. aeruginosa strains that produce extended-spectrum ß-lactamases (ESBLs).

14.
Trop Med Infect Dis ; 8(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37624319

RESUMO

The increasing reports of multidrug-resistant Klebsiella pneumoniae have emerged as a public health concern, raising questions about the potential routes for the evolution and dissemination of the pathogenic K. pneumoniae into environmental reservoirs. Potential drivers of the increased incidence of antimicrobial-resistant environmental K. pneumoniae include the eminent global climatic variations as a direct or indirect effect of human activities. The ability of microorganisms to adapt and grow at an exponential rate facilitates the distribution of environmental strains with acquired resistant mutations into water systems, vegetation, and soil which are major intersection points with animals and humans. The bacterial pathogen, K. pneumoniae, is one of the critical-priority pathogens listed by the World Health Organization, mostly associated with hospital-acquired infections. However, the increasing prevalence of pathogenic environmental strains with similar characteristics to clinical-antibiotic-resistant K. pneumoniae isolates is concerning. Considering the eminent impact of global climatic variations in the spread and dissemination of multidrug-resistant bacteria, in this review, we closely assess factors influencing the dissemination of this pathogen resulting in increased interaction with the environment, human beings, and animals. We also look at the recent developments in rapid detection techniques as part of the response measures to improve surveillance and preparedness for potential outbreaks. Furthermore, we discuss alternative treatment strategies that include secondary metabolites such as biosurfactants and plant extracts with high antimicrobial properties.

15.
Food Sci Nutr ; 11(8): 4853-4860, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576053

RESUMO

Antibiotic resistance is rising across the world. For a very long time, bitter ginger (Zingiber zerumbet) has been used as one of the most popular herbal remedies to treat a wide range of common diseases. Ginger has been shown to have antioxidant and antibacterial activity. It has various bioactive chemicals that might be utilized as an alternative treatment option for many infectious diseases. The present study aimed to examine the biochemical profile of ginger, antioxidant, and antibacterial activity against selective endodontic microbes. Antioxidant was measured using DPPH and antibacterial activity was performed using disk diffusion tests. Streptococcus mutants, Enterococcus faecalis, Staphylococcus spp., and Lactobacillus spp. were tested for antibacterial activity. Before evaluating the dried extracts, all solvents were eliminated using rotary evaporation. The obtained IC50 value revealed that ethanol extract had the greatest antioxidant activity. Concerning each bacterium, the plant extracts demonstrated considerable antibacterial activity (p = .001). Ethanol extracts showed the strongest antibacterial activity against the studied microorganisms. This study highlights that the Zingiber zerumbet (Z. zerumbet) is a strong antibacterial herb against multidrug-resistant (MDR) gram-positive bacteria. It may also be employed as a possible natural antioxidant source.

16.
Expert Rev Anti Infect Ther ; 21(8): 863-870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37477234

RESUMO

INTRODUCTION: TB is associated with high mortality and morbidity among infected individuals and a high transmission rate from person to person. Despite the availability of vaccines and several anti-TB,TB infection continues to increase. Global resistance to TB remains the greatest challenge. There has not been extensive research into a new treatment and management strategy for TB resistance therapy. This review is based on a review of new advances and alternative drugs in the treatment of drug-resistant TB. AREAS COVERED: New drug-resistant Mycobacterium tuberculosis therapy involves a combination of the latest TB drugs, new anti-TB drugs based on medicinal plant extracts for drug-resistant TB, mycobacteriophage therapy, the CRISPR/Cas9 system, and nanotechnology. EXPERT OPINION: It is necessary to determine the function of individual gene alterations in drug-resistant TB. A combination of the most recent anti-TB drugs, such as bedaquiline and delamanid, is recommended. Longitudinal studies and animal model experiments with some medicinal plant extracts are required for better results. Nanotechnology has the potential to reduce drug side effects. Useful efficacy of phage therapy and CRISPR-cas9 technology as adjunct therapies for the management of drug-resistant TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Humanos , Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mycobacterium tuberculosis/genética
17.
Biomed Pharmacother ; 165: 115189, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481932

RESUMO

Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 µg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.


Assuntos
Acinetobacter baumannii , Timol , Animais , Chlorocebus aethiops , Timol/farmacologia , Acinetobacter baumannii/genética , Transcriptoma , Células Vero , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Mamíferos
18.
J Med Life ; 16(5): 707-711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37520479

RESUMO

Urinary tract infections are a public health problem exacerbated by the rising concern of antibiotic resistance. Carbapenem-resistant Enterobacterales (CRE), mostly isolated from urine samples, represent an immediate public health threat, often associated with healthcare settings. This study investigated 27 cases of carbapenemase-producing organisms (CPO) detected in urinalysis over one year. There was a significant association between the presence of chronic indwelling urinary catheters and the temporary use of urinary catheters, with both groups accounting for 66.7% of all cases. We identified two modes of transmission for extended drug-resistant microorganisms: inter-hospital spread, covering wide geographical distances (involving four healthcare units across two other counties), and intra-hospital transmission (12 departments within our institution). Medium-size hospitals should thoroughly investigate their specific carbapenemase-producing strains. Their laboratories must be well-supplied to handle this situation and perform the necessary testing accurately. Treatment options should be available based on presumed susceptibility and antimicrobial susceptibility testing, with a range of antibiotics available, including novel agents such as Ceftazidime-avibactam, as well as established options like Aminoglycosides and Colistin. Adherence to rigorous catheter handling protocols, as emphasized by national and international guidelines, is essential and should be implemented consistently across all hospital departments.


Assuntos
Antibacterianos , beta-Lactamases , Humanos , Romênia/epidemiologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Hospitais , Klebsiella pneumoniae
19.
Ital J Food Saf ; 12(2): 11135, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37405148

RESUMO

The spread of multidrug resistant (MDR) Salmonella strains, along the poultry supply chain, can represent a relevant threat to human health. This study aimed to evaluate the prevalence and antimicrobial resistance of Salmonella spp. isolated from poultry meat for human consumption. Between 2019 and 2021, 145 samples were analyzed according to ISO 6579-1:2017. The strains isolated were identified by using biochemical-enzymatic assays and serotyping, according to the Kauffmann-White-Le Minor scheme. The antibiotic susceptibility tests were determined using the Kirby-Bauer method. Forty Salmonella spp. strains were isolated and serotyping showed Salmonella Infantis to be predominant. 80% of the isolated strains were MDR and identified as S. Infantis. This study confirms the circulation of MDR Salmonella isolated from poultry meat and highlights the predominance of the S. Infantis serovar, which represents an emerging risk factor under the One Health holistic approach.

20.
Transpl Infect Dis ; 25(4): e14088, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335213

RESUMO

BACKGROUND: Management of multidrug-resistant (MDR) and rifampin-resistant (RR) tuberculosis is challenging. Data on transplant recipients is limited. We reviewed published literature to examine treatment choices, outcomes, and adverse effects from MDR-TB/RR-TB treatment in transplant recipients. METHODS: Multiple databases from inception to 12/2022 were reviewed using the keywords "drug-resistant TB" or "drug-resistant tuberculosis" or "multidrug-resistant TB" or "multidrug-resistant tuberculosis". MDR-TB was defined as resistance to isoniazid (H) and rifampin (R), and RR if resistant to rifampin alone. Cases without patient-level data and reports which did not describe treatment and/or outcomes for MDR-TB were excluded. RESULTS: A total of 12 patients (10 solid organ transplants and two hematopoietic cell transplants) were included. Of these, 11 were MDR-TB and one was RR-TB. Seven recipients were male. The median age was 41.5 (range 16-60) years. Pre-transplant evaluation for the majority (8/12, 66.7%) did not reveal a prior history of TB or TB treatment, but 9/12 were from TB intermediate or high-burden countries. Seven patients were initially treated with the quadruple first-line anti-TB regimen. Those who had early RR confirmation (5/12) via Xpert MTB/RIF assay were initiated on alternative therapies. Final regimens were individualized based on susceptibility profiles and tolerability. Adverse events were reported in seven recipients, including acute kidney injury (n = 3), cytopenias (n = 3), and jaundice (n = 2). Four recipients died, with two deaths attributable to TB. The remaining eight patients who survived had functioning allografts at the last follow-up. CONCLUSIONS: MDR-TB treatment in transplant recipients is associated with many complications. Xpert MTB/RIF detected RR early and guided early empiric therapy.


Assuntos
Transplantados , Tuberculose Resistente a Múltiplos Medicamentos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Isoniazida/farmacologia , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA