Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fitoterapia ; 174: 105875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417678

RESUMO

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Assuntos
Monoterpenos Acíclicos , Neoplasias da Mama , Citrus paradisi , Mentha , Óleos Voláteis , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Estrutura Molecular , Neoplasias da Mama/tratamento farmacológico , Mentha piperita
2.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38199864

RESUMO

During communication in real-life settings, our brain often needs to integrate auditory and visual information and at the same time actively focus on the relevant sources of information, while ignoring interference from irrelevant events. The interaction between integration and attention processes remains poorly understood. Here, we use rapid invisible frequency tagging and magnetoencephalography to investigate how attention affects auditory and visual information processing and integration, during multimodal communication. We presented human participants (male and female) with videos of an actress uttering action verbs (auditory; tagged at 58 Hz) accompanied by two movie clips of hand gestures on both sides of fixation (attended stimulus tagged at 65 Hz; unattended stimulus tagged at 63 Hz). Integration difficulty was manipulated by a lower-order auditory factor (clear/degraded speech) and a higher-order visual semantic factor (matching/mismatching gesture). We observed an enhanced neural response to the attended visual information during degraded speech compared to clear speech. For the unattended information, the neural response to mismatching gestures was enhanced compared to matching gestures. Furthermore, signal power at the intermodulation frequencies of the frequency tags, indexing nonlinear signal interactions, was enhanced in the left frontotemporal and frontal regions. Focusing on the left inferior frontal gyrus, this enhancement was specific for the attended information, for those trials that benefitted from integration with a matching gesture. Together, our results suggest that attention modulates audiovisual processing and interaction, depending on the congruence and quality of the sensory input.


Assuntos
Encéfalo , Percepção da Fala , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Percepção Visual/fisiologia , Magnetoencefalografia , Fala/fisiologia , Atenção/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Estimulação Luminosa
3.
Eur J Neurosci ; 59(4): 613-640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37675803

RESUMO

Closed-loop auditory stimulation (CLAS) is a brain modulation technique in which sounds are timed to enhance or disrupt endogenous neurophysiological events. CLAS of slow oscillation up-states in sleep is becoming a popular tool to study and enhance sleep's functions, as it increases slow oscillations, evokes sleep spindles and enhances memory consolidation of certain tasks. However, few studies have examined the specific neurophysiological mechanisms involved in CLAS, in part because of practical limitations to available tools. To evaluate evidence for possible models of how sound stimulation during brain up-states alters brain activity, we simultaneously recorded electro- and magnetoencephalography in human participants who received auditory stimulation across sleep stages. We conducted a series of analyses that test different models of pathways through which CLAS of slow oscillations may affect widespread neural activity that have been suggested in literature, using spatial information, timing and phase relationships in the source-localized magnetoencephalography data. The results suggest that auditory information reaches ventral frontal lobe areas via non-lemniscal pathways. From there, a slow oscillation is created and propagated. We demonstrate that while the state of excitability of tissue in auditory cortex and frontal ventral regions shows some synchrony with the electroencephalography (EEG)-recorded up-states that are commonly used for CLAS, it is the state of ventral frontal regions that is most critical for slow oscillation generation. Our findings advance models of how CLAS leads to enhancement of slow oscillations, sleep spindles and associated cognitive benefits and offer insight into how the effectiveness of brain stimulation techniques can be improved.


Assuntos
Magnetoencefalografia , Sono , Humanos , Estimulação Acústica , Sono/fisiologia , Eletroencefalografia/métodos , Encéfalo/fisiologia
4.
Proc Natl Acad Sci U S A ; 120(49): e2309166120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032934

RESUMO

Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise-vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (nondegraded) version of the speech. This intermediate priming, which generates a "pop-out" percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affect acoustic and linguistic neural representations using multivariate temporal response functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. mTRFs analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming but only by the acoustics of the stimuli (bottom-up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex, in line with engagement of top-down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension.


Assuntos
Inteligibilidade da Fala , Percepção da Fala , Inteligibilidade da Fala/fisiologia , Estimulação Acústica/métodos , Fala/fisiologia , Ruído , Acústica , Magnetoencefalografia/métodos , Percepção da Fala/fisiologia
5.
Hear Res ; 439: 108879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826916

RESUMO

We demonstrate how the structure of auditory cortex can be investigated by combining computational modelling with advanced optimisation methods. We optimise a well-established auditory cortex model by means of an evolutionary algorithm. The model describes auditory cortex in terms of multiple core, belt, and parabelt fields. The optimisation process finds the optimum connections between individual fields of auditory cortex so that the model is able to reproduce experimental magnetoencephalographic (MEG) data. In the current study, this data comprised the auditory event-related fields (ERFs) recorded from a human subject in an MEG experiment where the stimulus-onset interval between consecutive tones was varied. The quality of the match between synthesised and experimental waveforms was 98%. The results suggest that neural activity caused by feedback connections plays a particularly important role in shaping ERF morphology. Further, ERFs reflect activity of the entire auditory cortex, and response adaptation due to stimulus repetition emerges from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Our findings constitute the first stage in establishing a new non-invasive method for uncovering the organisation of the human auditory cortex.


Assuntos
Córtex Auditivo , Animais , Humanos , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Magnetoencefalografia , Macaca mulatta/fisiologia , Simulação por Computador , Potenciais Evocados Auditivos , Percepção Auditiva/fisiologia , Estimulação Acústica
6.
Prog Brain Res ; 281: 131-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37806713

RESUMO

Tinnitus, a frequent disorder, is the conscious perception of a sound in the absence of a corresponding external acoustic sound source in the sense of a phantom sound. Although the majority of people who perceive a tinnitus sound can cope with it and are only minimaly impaired in their quality of lfe, 2-3% of the population perceive tinnitus as a major problem. Recently it has been proposed that the two groups should be differentiated by distict terms: "Tinnitus" describes the auditory or sensory component, whereas "Tinnitus Disorder" reflects the auditory component and the associated suffering. There is overwhelming evidence that a high tinnitus burden is associated with the increased occurrence of comorbidities, including depression. Since no causal therapeutic options are available for patients with tinnitus at the present time, the identification and adequate treatment of relevant comorbidities is of great importance for the reduction of tinnitus distress. This chapter deals with the relationship between tinnitus and depression. The neuronal mechanisms underlying tinnitus will first be discussed. There will also be an overview about depression and treatment resistant depression (TRD). A comprehensive review about the state-of-the-art evidences of the relationship between tinnitus and TRD will then be provided.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Zumbido , Humanos , Zumbido/terapia , Zumbido/etiologia , Transtorno Depressivo Resistente a Tratamento/complicações , Depressão , Estimulação Acústica , Som
7.
Psych J ; 12(5): 749-751, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37807896

RESUMO

The capacity of the human brain to detect unattended deviant information from frequent information in our environment shows a hemispheric asymmetry, with stronger brain activation in the right temporal area. This lateralization is distinct from the functional left-ward asymmetry of auditory information processing.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Percepção Auditiva/fisiologia , Cognição , Lateralidade Funcional/fisiologia , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia
8.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645733

RESUMO

Imagine a song you know by heart. With little effort you could sing it or play it vividly in your mind. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts". Here, we decoded listened and imagined melodies from MEG brain data (N = 71) to show that auditory regions represent the sensory properties of individual sounds, whereas cognitive control (prefrontal cortex, basal nuclei, thalamus) and episodic memory areas (inferior and medial temporal lobe, posterior cingulate, precuneus) hold and manipulate the melody as an abstract unit. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting the volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations and paves the way for future work on neural decoding of auditory imagination.

9.
J Neurosci ; 43(36): 6306-6319, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37591736

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed to activate the locus ceruleus-noradrenaline (LC-NA) system. However, previous studies failed to find consistent modulatory effects of taVNS on LC-NA biomarkers. Previous studies suggest that phasic taVNS may be capable of modulating LC-NA biomarkers such as pupil dilation and alpha oscillations. However, it is unclear whether these effects extend beyond pure sensory vagal nerve responses. Critically, the potential of the pupillary light reflex as an additional taVNS biomarker has not been explored so far. Here, we applied phasic active and sham taVNS in 29 subjects (16 female, 13 male) while they performed an emotional Stroop task (EST) and a passive pupil light reflex task (PLRT). We recorded pupil size and brain activity dynamics using a combined Magnetoencephalography (MEG) and pupillometry design. Our results show that phasic taVNS significantly increased pupil dilation and performance during the EST. During the PLRT, active taVNS reduced and delayed pupil constriction. In the MEG, taVNS increased frontal-midline theta and alpha power during the EST, whereas occipital alpha power was reduced during both the EST and PLRT. Our findings provide evidence that phasic taVNS systematically modulates behavioral, pupillary, and electrophysiological parameters of LC-NA activity during cognitive processing. Moreover, we demonstrate for the first time that the pupillary light reflex can be used as a simple and effective proxy of taVNS efficacy. These findings have important implications for the development of noninvasive neuromodulation interventions for various cognitive and clinical applications.SIGNIFICANCE STATEMENT taVNS has gained increasing attention as a noninvasive neuromodulation technique and is widely used in clinical and nonclinical research. Nevertheless, the exact mechanism of action of taVNS is not yet fully understood. By assessing physiology and behavior in a response conflict task in healthy humans, we demonstrate the first successful application of a phasic, noninvasive vagus nerve stimulation to improve cognitive control and to systematically modulate pupillary and electrophysiological markers of the noradrenergic system. Understanding the mechanisms of action of taVNS could optimize future clinical applications and lead to better treatments for mental disorders associated with noradrenergic dysfunction. In addition, we present a new taVNS-sensitive pupillary measure representing an easy-to-use biomarker for future taVNS studies.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Feminino , Masculino , Pupila , Nervo Vago , Processos Mentais
10.
Hum Brain Mapp ; 44(15): 4972-4985, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493309

RESUMO

Adults and children show remarkable differences in cortical auditory activation which, in children, have shown relevance for cognitive performance, specifically inhibitory control. However, it has not been tested whether these differences translate to functional differences in response inhibition between adults and children. We recorded auditory responses of adults and school-aged children (6-14 years) using combined magneto- and electroencephalography (M/EEG) during passive listening conditions and an auditory Go/No-go task. The associations between auditory cortical responses and inhibition performance measures diverge between adults and children; while in children the brain-behavior associations are not significant, or stronger responses are beneficial, adults show negative associations between auditory cortical responses and inhibitory performance. Furthermore, we found differences in brain responses between adults and children; the late (~200 ms post stimulation) adult peak activation shifts from auditory to frontomedial areas. In contrast, children show prolonged obligatory responses in the auditory cortex. Together this likely translates to a functional difference between adults and children in the cortical resources for performance consistency in auditory-based cognitive tasks.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Humanos , Adulto , Criança , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Análise e Desempenho de Tarefas , Eletroencefalografia , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia
11.
Neuropsychologia ; 188: 108654, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507066

RESUMO

Narratives may be regarded as simulations of everyday social situations. They are key to studying the human mind in socio-culturally determined contexts as they allow anchoring to the common ground of embodied and environmentally-engaged cognition. Here we review recent findings from naturalistic neuroscience on neural functions in conditions that mimic lifelike situations. We will focus particularly on neurocinematics, a research field that applies mediated narratives as stimuli for neuroimaging experiments. During the last two decades, this paradigm has contributed to an accumulation of insights about the neural underpinnings of behavior and sense-making in various narratively contextualized situations particularly pertaining to socio-emotional encounters. One of the key questions in neurocinematics is, how do intersubjectively synchronized brain activations relate to subjective experiences? Another question we address is how to bring natural contexts into experimental studies. Seeking to respond to both questions, we suggest neurocinematic studies to examine three manifestations of the same phenomenon side-by-side: subjective experiences of narrative situations, unfolding of narrative stimulus structure, and neural processes that co-constitute the experience. This approach facilitates identifying experientially meaningful activity patterns in the brain and points out what they may mean in relation to shared and communicable contents. Via rich-featured and temporally contextualized narrative stimuli, neurocinematics attempts to contribute to emerging holistic theories of neural dynamics and connectomics explaining typical and atypical interindividual variability.


Assuntos
Cognição , Neurociências , Humanos , Encéfalo/diagnóstico por imagem , Neuroimagem
12.
Psychophysiology ; 60(11): e14362, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37350379

RESUMO

The most prominent acoustic features in speech are intensity modulations, represented by the amplitude envelope of speech. Synchronization of neural activity with these modulations supports speech comprehension. As the acoustic modulation of speech is related to the production of syllables, investigations of neural speech tracking commonly do not distinguish between lower-level acoustic (envelope modulation) and higher-level linguistic (syllable rate) information. Here we manipulated speech intelligibility using noise-vocoded speech and investigated the spectral dynamics of neural speech processing, across two studies at cortical and subcortical levels of the auditory hierarchy, using magnetoencephalography. Overall, cortical regions mostly track the syllable rate, whereas subcortical regions track the acoustic envelope. Furthermore, with less intelligible speech, tracking of the modulation rate becomes more dominant. Our study highlights the importance of distinguishing between envelope modulation and syllable rate and provides novel possibilities to better understand differences between auditory processing and speech/language processing disorders.


Assuntos
Percepção da Fala , Fala , Humanos , Magnetoencefalografia , Ruído , Cognição , Estimulação Acústica , Inteligibilidade da Fala
13.
Theriogenology ; 207: 72-81, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269598

RESUMO

This study investigated how lncRNA Meg3 affects the onset of puberty in female rats. We determined Meg3 expression in the hypothalamus-pituitary-ovary axis of female rats at the infancy, prepubertal, pubertal, and adult life stages, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also assessed the effects of Meg3 knockdown on the expression levels of puberty-related genes and Wnt/ß-catenin proteins in the hypothalamus, time of puberty onset, levels of reproductive genes and hormones, and ovarian morphology in female rats. Meg3 expression in the ovary varied significantly between prepuberty and puberty (P < 0.01). Meg3 knockdown decreased the expression of Gnrh, and Kiss1 mRNA (P < 0.05) and increased the expression of Wnt (P < 0.01) and ß-catenin proteins (P < 0.05) in the hypothalamic cells. Onset of puberty in Meg3 knockdown rats was delayed compared to the control group (P < 0.05). Meg3 knockdown decreased Gnrh mRNA levels (P < 0.05) and increased Rfrp-3 mRNA levels (P < 0.05) in the hypothalamus. The serum concentrations of progesterone (P4) and estradiol (E2) of Meg3 knockdown rats were lower than those in the control animals (P < 0.05). Higher longitudinal diameter and ovary weight were found in Meg3 knockdown rats (P < 0.05). These findings suggest that Meg3 regulates the expression of Gnrh, Kiss-1 mRNA and Wnt/ß-catenin proteins in the hypothalamic cells, and Gnrh, Rfrp-3 mRNA of the hypothalamus and the serum concentration of P4 and E2, and its knockdown delays the onset of puberty in female rats.


Assuntos
RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Maturidade Sexual/fisiologia , RNA Mensageiro/metabolismo
14.
Neuroimage ; 275: 120163, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178820

RESUMO

The infant auditory system rapidly matures across the first years of life, with a primary goal of obtaining ever-more-accurate real-time representations of the external world. Our understanding of how left and right auditory cortex neural processes develop during infancy, however, is meager, with few studies having the statistical power to detect potential hemisphere and sex differences in primary/secondary auditory cortex maturation. Using infant magnetoencephalography (MEG) and a cross-sectional study design, left and right auditory cortex P2m responses to pure tones were examined in 114 typically developing infants and toddlers (66 males, 2 to 24 months). Non-linear maturation of P2m latency was observed, with P2m latencies decreasing rapidly as a function of age during the first year of life, followed by slower changes between 12 and 24 months. Whereas in younger infants auditory tones were encoded more slowly in the left than right hemisphere, similar left and right P2m latencies were observed by ∼21 months of age due to faster maturation rate in the left than right hemisphere. No sex differences in the maturation of the P2m responses were observed. Finally, an earlier left than right hemisphere P2m latency predicted better language performance in older infants (12 to 24 months). Findings indicate the need to consider hemisphere when examining the maturation of auditory cortex neural activity in infants and toddlers and show that the pattern of left-right hemisphere P2m maturation is associated with language performance.


Assuntos
Córtex Auditivo , Masculino , Humanos , Lactente , Idoso , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estudos Transversais , Magnetoencefalografia , Estimulação Acústica
15.
Neuroimage ; 274: 120142, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120044

RESUMO

Resting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. However, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting-state MEG data. After being trained with a large dataset from the Cam-CAN repository, the model has learned to represent and generate patterns of spontaneous cortical activity using latent nonlinear components, which reflects principal cortical patterns with specific spectral modes. When applied to the downstream classification task of audio-visual MEG, the nonlinear ICA model achieves competitive performance with deep neural networks despite limited access to labels. We further validate the generalizability of the model across different datasets by applying it to an independent neurofeedback dataset for decoding the subject's attentional states, providing a real-time feature extraction and decoding mindfulness and thought-inducing tasks with an accuracy of around 70% at the individual level, which is much higher than obtained by linear ICA or other baseline methods. Our results demonstrate that nonlinear ICA is a valuable addition to existing tools, particularly suited for unsupervised representation learning of spontaneous MEG activity which can then be applied to specific goals or tasks when labelled data are scarce.


Assuntos
Magnetoencefalografia , Neurorretroalimentação , Humanos , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Neurorretroalimentação/métodos , Redes Neurais de Computação , Atenção
16.
Hum Brain Mapp ; 44(9): 3706-3716, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37070800

RESUMO

Attentional control of auditory N100/M100 gain is reduced in individuals with first-episode psychosis (FEP). Persistent problems with executive modulation of auditory sensory activity may impact multiple aspects of psychosis. As a follow-up to our prior work reporting deficits in attentional M100 gain modulation in auditory cortex, we examined changes in M100 gain modulation longitudinally, and further examined relationships between auditory M100 and symptoms of psychosis. We compared auditory M100 in auditory sensory cortex between 21 FEP and 29 matched healthy participants and between timepoints separated by 220 ± 100 days. Magnetoencephalography data were recorded while participants alternately attended or ignored tones in an auditory oddball task. M100 was measured as the average of 80-140 ms post-stimulus in source-localized evoked responses within bilateral auditory cortex. Symptoms were assessed using the PANSS and PSYRATS. M100 amplitudes, attentional modulation of M100 amplitudes, and symptom severity all improved in FEP over time. Further, improvement in M100 modulation correlated with improvements in negative symptoms (PANSS) as well as physical, cognitive, and emotional components of hallucinations (PSYRATS). Conversely, improvements in the overall size of the M100, rather than the difference between active and passive M100 amplitudes, were related to worsening of positive symptoms (PANSS) and physical components of hallucinations. Results indicate a link between symptoms (particularly auditory hallucinations) and auditory cortex neurophysiology in FEP, where auditory attention and auditory sensation have opposed relationships to symptom change. These findings may inform current models of psychosis etiology and could provide nonpharmaceutical avenues for early intervention.


Assuntos
Córtex Auditivo , Transtornos Psicóticos , Humanos , Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia , Córtex Auditivo/fisiologia , Alucinações , Atenção
17.
Neuroimage ; 272: 120040, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36935084

RESUMO

During listening, brain activity tracks the rhythmic structures of speech signals. Here, we directly dissociated the contribution of neural envelope tracking in the processing of speech acoustic cues from that related to linguistic processing. We examined the neural changes associated with the comprehension of Noise-Vocoded (NV) speech using magnetoencephalography (MEG). Participants listened to NV sentences in a 3-phase training paradigm: (1) pre-training, where NV stimuli were barely comprehended, (2) training with exposure of the original clear version of speech stimulus, and (3) post-training, where the same stimuli gained intelligibility from the training phase. Using this paradigm, we tested if the neural responses of a speech signal was modulated by its intelligibility without any change in its acoustic structure. To test the influence of spectral degradation on neural envelope tracking independently of training, participants listened to two types of NV sentences (4-band and 2-band NV speech), but were only trained to understand 4-band NV speech. Significant changes in neural tracking were observed in the delta range in relation to the acoustic degradation of speech. However, we failed to find a direct effect of intelligibility on the neural tracking of speech envelope in both theta and delta ranges, in both auditory regions-of-interest and whole-brain sensor-space analyses. This suggests that acoustics greatly influence the neural tracking response to speech envelope, and that caution needs to be taken when choosing the control signals for speech-brain tracking analyses, considering that a slight change in acoustic parameters can have strong effects on the neural tracking response.


Assuntos
Percepção da Fala , Fala , Humanos , Fala/fisiologia , Estimulação Acústica , Percepção da Fala/fisiologia , Magnetoencefalografia , Ruído , Inteligibilidade da Fala
18.
Cereb Cortex ; 33(6): 3053-3066, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35858223

RESUMO

Humans can direct attentional resources to a single sound occurring simultaneously among others to extract the most behaviourally relevant information present. To investigate this cognitive phenomenon in a precise manner, we used frequency-tagging to separate neural auditory steady-state responses (ASSRs) that can be traced back to each auditory stimulus, from the neural mix elicited by multiple simultaneous sounds. Using a mixture of 2 frequency-tagged melody streams, we instructed participants to selectively attend to one stream or the other while following the development of the pitch contour. Bottom-up attention towards either stream was also manipulated with salient changes in pitch. Distributed source analyses of magnetoencephalography measurements showed that the effect of ASSR enhancement from top-down driven attention was strongest at the left frontal cortex, while that of bottom-up driven attention was dominant at the right temporal cortex. Furthermore, the degree of ASSR suppression from simultaneous stimuli varied across cortical lobes and hemisphere. The ASSR source distribution changes from temporal-dominance during single-stream perception, to proportionally more activity in the frontal and centro-parietal cortical regions when listening to simultaneous streams. These findings are a step forward to studying cognition in more complex and naturalistic soundscapes using frequency-tagging.


Assuntos
Córtex Auditivo , Percepção Auditiva , Humanos , Estimulação Acústica , Percepção Auditiva/fisiologia , Magnetoencefalografia , Lobo Temporal/fisiologia , Atenção/fisiologia , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia
19.
Neuroscientist ; 29(1): 62-77, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34873945

RESUMO

Bioelectromagnetism has contributed some of the most commonly used techniques to human neuroscience such as magnetoencephalography (MEG), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and transcranial electric stimulation (TES). The considerable differences in their technical design and practical use give rise to the impression that these are quite different techniques altogether. Here, we review, discuss and illustrate the fundamental principle of Helmholtz reciprocity that provides a common ground for all four techniques. We show that, more than 150 years after its discovery by Helmholtz in 1853, reciprocity is important to appreciate the strengths and limitations of these four classical tools in neuroscience. We build this case by explaining the concept of Helmholtz reciprocity, presenting a methodological account of this principle for all four methods and, finally, by illustrating its application in practical clinical studies.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Encéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Magnetoencefalografia , Mapeamento Encefálico/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-36470421

RESUMO

Language impairment is comorbid in most children with Autism Spectrum Disorder (ASD), but its neural mechanisms are still poorly understood. Some studies hypothesize that the atypical low-level sensory perception in the auditory cortex accounts for the abnormal language development in these children. One of the potential non-invasive measures of such low-level perception can be the cortical gamma-band oscillations registered with magnetoencephalography (MEG), and 40 Hz Auditory Steady-State Response (40 Hz ASSR) is a reliable paradigm for eliciting auditory gamma response. Although there is research in children with and without ASD using 40 Hz ASSR, nothing is known about the relationship between this auditory response in children with ASD and their language abilities measured directly in formal assessment. In the present study, we used MEG and individual brain models to investigate 40 Hz ASSR in primary-school-aged children with and without ASD. It was also used to assess how the strength of the auditory response is related to language abilities of children with ASD, their non-verbal IQ, and social functioning. A total of 40 children were included in the study. The results demonstrated that 40 Hz ASSR was reduced in the right auditory cortex in children with ASD when comparing them to typically developing controls. Importantly, our study provides the first evidence of the association between 40 Hz ASSR in the language-dominant left auditory cortex and language comprehension in children with ASD. This link was domain-specific because the other brain-behavior correlations were non-significant.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Humanos , Criança , Transtorno do Espectro Autista/complicações , Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Compreensão , Magnetoencefalografia/métodos , Percepção Auditiva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA