Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38480002

RESUMO

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Assuntos
Melaninas , Fator de Transcrição Associado à Microftalmia , Monofenol Mono-Oxigenase , Extratos Vegetais , Melaninas/biossíntese , Melaninas/metabolismo , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral , República da Coreia , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Oxirredutases Intramoleculares/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Melanoma Experimental/metabolismo , Oxirredutases/metabolismo , Tubérculos/química , Glicoproteínas de Membrana/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158096

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Assuntos
Melaninas , Melanossomas , Animais , Camundongos , Humanos , Melaninas/metabolismo , Melanossomas/metabolismo , Peixe-Zebra , Monofenol Mono-Oxigenase/metabolismo , Melanogênese , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Melanócitos , AMP Cíclico/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511600

RESUMO

Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.


Assuntos
Melaninas , Oryza , Melaninas/metabolismo , Flavonoides/farmacologia , Polifenóis/farmacologia , Regulação para Baixo , Oryza/metabolismo , Transdução de Sinais , Fator de Transcrição Associado à Microftalmia/metabolismo , Antígeno MART-1/metabolismo , Antígeno MART-1/farmacologia , Raios Ultravioleta , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
4.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235295

RESUMO

Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show that from among the samples tested, only the saponins-rich fraction from leaves (ALS) inhibited melanin production in B16 murine melanoma (B16) cells. The mechanism of the melanogenesis inhibition was elucidated by determining the protein and mRNA expression of melanogenesis-associated enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT), and microphthalmia-associated transcription factor (MITF), and performing DNA microarray analysis. Results showed that 10 µg/mL ALS significantly inhibited melanogenesis in B16 cells and human epidermal melanocytes by 59% and 48%, respectively, without cytotoxicity. The effect of ALS on melanogenesis can be attributed to the decrease in TYR, TRP1, and MITF expression at the protein and mRNA levels. MITF inhibition naturally led to the downregulation of the expression of Tyr and Trp1 genes. Results of the DNA microarray analysis revealed the effect on melanogenesis-associated cAMP and Wnt signaling pathways' genes. The results of this study suggest that ALS may be used in cosmeceuticals preparations for hyperpigmentation treatment.


Assuntos
Esclerose Lateral Amiotrófica , Cosmecêuticos , Melanoma Experimental , Saponinas , Sapotaceae , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cosmecêuticos/farmacologia , DNA/metabolismo , Humanos , Melaninas , Melanócitos/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Sapotaceae/metabolismo
5.
Cancers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291795

RESUMO

TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.

6.
Phytomedicine ; 107: 154449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126406

RESUMO

BACKGROUND: Melanin plays an important role in protecting human skin, while excessive synthesis of melanin can cause abnormal pigmentation and induce skin diseases. Long-term use of commercial whitening agents in managing skin melanin such as kojic acid and arbutin can lead to some negative effects such as dermatitis and liver cancer. Although past studies have researched the melanin inhibitory effect of plant extracts, the effective dose and mechanisms are not well summarized and discussed. This study aims to explore the melanin inhibitory property of phytochemicals and tries to answer the following research questions: (1) Which plant extracts and phytochemicals could inhibit melanin biosynthesis in the skin? what is the mechanism of action? (2) Have human trials been conducted to confirm their melanin inhibitory effect? (3) If not, which phytochemicals are recommended for further human trials? This article would provide information for future research to develop natural and safe skin whitening products. METHODS: A preferred reporting items for systematic reviews and meta-analyses (PRISMA) systematic review method and OHAT risk-of-bias tool were applied to screen literature from 2000 to 2021 and 50 research articles met the selection criteria. RESULTS: Flavonoids, phenolic acids, stilbenes and terpenes are main classes of phytochemicals responsible for the melanin inhibitory effects. The in vitro/in vivo melanin inhibitory effects of these plant extracts/phytochemicals are achieved via three main mechanisms: (1) the ethyl acetate extract of Oryza sativa Indica cv., and phytochemicals such as galangin and origanoside could manage melanin biosynthesis through competitive inhibition, non-competitive inhibition or mixed-type inhibition of tyrosinase; (2) phytochemicals such as ginsenoside F1, ginsenoside Rb1 and 4­hydroxy-3-methoxycinnamaldehyde could inhibit melanogenesis through down-regulating microphthalmia-related transcription factor (MITF) gene expression via different signalling pathways; (3) the ethanolic extracts of Dimorphandra gardneriana, Dimorphandra gardneriana, Lippia microphylla and Schinus terebinthifolius have a good ultraviolet absorption ability and high sun protective factor (SPF) values, thereby inhibiting UV induced melanogenesis in the skin. CONCLUSION: Although many plant extracts and phytochemicals have been found to inhibit melanin production, most of the results were only proved in cellular and/or animal models. Only the ethyl acetate extract of Oryza sativa Indica cv. panicle, and ginsenoside F1 were proved effective in human trials. Animal studies proved the effectiveness of galangin, origanoside, ginsenoside Rb1 and 4­hydroxy-3-methoxycinnamaldehyde with effective dose below 3 mM, and therefore recommended for future human trial. In addition, cellular studies have demonstrated the effectiveness of oxyresveratrol, mulberroside A, kurarinol, kuraridinol, plumbagin, (6aR,11aR)-3,8-dihydroxy-9­methoxy pterocarpan, ginsenoside Rh4, cardamonin, nobiletin, curcumin, ß-mangostin and emodin in inhibiting melanin synthesis at low concentrations of 20 µM and proved the low SPF values of Dimorphandra gardneriana, Dimorphandra gardneriana, Lippia microphylla and Schinus terebinthifolius extracts, and therefore recommended for further animal and human trials.


Assuntos
Clareadores , Curcumina , Emodina , Pterocarpanos , Estilbenos , Acetatos , Acroleína/análogos & derivados , Animais , Arbutina/farmacologia , Linhagem Celular Tumoral , Flavonoides/farmacologia , Ginsenosídeos , Glucosídeos , Humanos , Hidroxibenzoatos , Melaninas , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fatores de Transcrição
7.
J Med Food ; 25(8): 818-827, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35914025

RESUMO

Ultraviolet (UV) radiation generates a range of biological effects in the skin, which includes premature skin aging, hyperpigmentation, and cancer. Therefore, the development of new effective agents for UV-related skin damage remains a challenge in the pharmaceutical industry. This study aims to test the inhibitory effect of crocodile white blood cell (cWBC) extract, a rich source of bioactive peptides, on ultraviolet B (UVB)-induced melanocyte pigmentation. The results showed that cWBC (6.25-400 µg/mL) could inhibit tyrosinase without adduct formation by 12.97 ± 4.20% on average. cWBC pretreatment (25-100 µg/mL) had no cytotoxicity and reduced intracellular melanin to 111.17 ± 5.20% compared with 124.87 ± 7.43 for UVB condition. The protective role of cWBC pretreatment against UVB was exhibited by the promotion of cell proliferation and the prevention of UVB-induced morphological change as observed from F actin staining. The decrease of microphthalmia-associated transcription factor expression levels after cWBC pretreatment might be a mechanism by which cWBC suppresses UVB-induced pigmentation. These results suggest that cWBC could be beneficial for the prevention of UVB-induced skin pigmentation.


Assuntos
Jacarés e Crocodilos , Jacarés e Crocodilos/metabolismo , Animais , Leucócitos , Melaninas/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Monofenol Mono-Oxigenase/metabolismo , Raios Ultravioleta/efeitos adversos
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163281

RESUMO

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Assuntos
Isoflavonas/farmacologia , Melaninas/metabolismo , Animais , Astragalus propinquus/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Isoflavonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , alfa-MSH/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Fitoterapia ; 156: 105094, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861325

RESUMO

Ruta graveolens L. has been widely used to treat various skin ailments, especially vitiligo. In this study, we isolated a new furanocoumarin named Rutagrarin (1) along with 14 known compounds (2-15) from the aerial parts of R. graveolens and elucidated their chemical structures via various spectroscopy. We found that compound 5 promoted melanogenesis and tyrosinase activity in B16 cells. Further investigation on underlying mechanisms revealed that compound 5 activated the transcription of microtia-related transcription factors and promoted the production of melanin in B16 cells via the Akt/GSK-3ß/ß-catenin pathway. Therefore, we confirmed the traditional efficacy of R. graveolens and speculated that compound 5 could be used as a natural drug to treat vitiligo.


Assuntos
Indóis/metabolismo , Melaninas/metabolismo , Extratos Vegetais/farmacologia , Ruta/química , Animais , Western Blotting , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Melaninas/análise , Melanoma Experimental , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria Infravermelho , Vitiligo/tratamento farmacológico
10.
Biotechnol Appl Biochem ; 69(2): 808-821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33797132

RESUMO

Green tea polyphenols (GTPs) are regarded as anticancer substances and have been revealed to play significant roles in the development of malignant melanoma. However, the mechanisms by which GTPs perform anticarcinogenic activity are not well elucidated. Cellular function assays revealed that GTPs inhibited melanoma cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro. Circ_MITF expression was elevated in melanoma tissues and cells but was decreased by GTPs in cells. Functional experiments indicated circ_MITF overexpression reversed the anticancer effects of GTPs on melanoma cells. Then the underlying mechanism analysis suggested that circ_MITF served as a sponge for miR-30e-3p to upregulate the level of HDAC2. MiR-30e-3p reexpression attenuated the regulatory effects of circ_MITF on GTPs-treated melanoma cells. Silencing of miR-30e-3p promoted the malignant phenotypes in GTPs-treated melanoma cells, which were reversed by HDAC2 knockdown. Preclinically, administration of GTPs suppressed the expression of downstream target genes and repressed tumorigenesis of xenografts in nude mice. In all, GTPs suppressed melanoma progression by regulating circ_MITF/miR-30e-3p/HDAC2 axis, providing a potential therapeutic strategy for human malignant melanoma intervention.


Assuntos
Melanoma , MicroRNAs , Animais , Proliferação de Células/genética , Histona Desacetilase 2/genética , Humanos , Melanoma/tratamento farmacológico , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição Associado à Microftalmia , Polifenóis/farmacologia , RNA Circular , Neoplasias Cutâneas , Chá , Melanoma Maligno Cutâneo
11.
Free Radic Biol Med ; 176: 392-405, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34560247

RESUMO

Vitiligo is a depigmented disease featured as diagnosis simplicity and cure difficulty. Its occurrence and development are associated with a variety of factors, including oxidative stress, heredity and immunity, etc. Existing drugs for the treatment of vitiligo are to reduce the death of melanocytes and induce pigment accumulation as the main treatment strategy. Ermanin, a member of the flavonoids, is extracted from bee glue which is wildly used to treat vitiligo in traditional Chinese medicine. Therefore, this article discusses the relationship between melanogenesis and glutathione redox homeostasis by ermanin via biochemical and free radical approaches in vivo and in vitro. In this study, we found that ermanin effectively increased the melanin content at the in vivo model (zebrafish). Moreover, the melanin levels at the in vitro models (B16F10 cells and primary melanocytes) were also increased significantly accompanied with a shift of glutathione redox homeostasis towards oxidation. Ermanin also significantly enhanced the activity of tyrosinase. Meanwhile, ermanin increased the expression levels of TYR, TRP-1, and DCT genes, while ROS accumulation and glutathione depletion mediated the accumulation of pigments caused by ermanin, which increased the production of pigments and regulated the expression mRNA levels of TYR and DCT genes. From the perspective of pigment production regulation pathways, western blot showed that the pigment accumulation caused by ermanin was closely related to the CREB-MITF pathways, it activated CREB, TYR, TRP-1, and DCT proteins. The use of CREB specific inhibitor 666-15 and MITF inhibitor ML329 confirmed that the pigment accumulation caused by ermanin was positively correlated with CREB and MITF proteins. Our findings revealed the potential mechanisms by which ermanin promoted the production of melanin through activated CREB-MITF signaling pathway and glutathione redox homeostasis towards oxidation function as a signal are beneficial to melanin production and will help develop novel therapeutic approaches for vitiligo.


Assuntos
Glutationa , Peixe-Zebra , Animais , Flavonoides/farmacologia , Homeostase , Melanócitos , Oxirredução
12.
Nutrients ; 13(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34444857

RESUMO

The beneficial effect on health of argan oil is recognized worldwide. We have previously reported that the cake that remains after argan oil extraction (argan press-cake or APC) inhibits melanogenesis in B16 melanoma cells in a time-dependent manner without cytotoxicity. In this study, the global gene expression profile of B16 melanoma cells treated with APC extract was determined in order to gain an understanding of the possible mechanisms of action of APC. The results suggest that APC extract inhibits melanin biosynthesis by down-regulating microphthalmia-associated transcription factor (Mitf) and its downstream signaling pathway through JNK signaling activation, and the inhibition of Wnt/ß-catenin and cAMP/PKA signaling pathways. APC extract also prevented the transport of melanosomes by down-regulating Rab27a expression. These results suggest that APC may be an important natural skin whitening product and pharmacological agent used for clinical treatment of pigmentary disorders.


Assuntos
Fármacos Dermatológicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Sapotaceae , Neoplasias Cutâneas/tratamento farmacológico , Animais , Regulação para Baixo/efeitos dos fármacos , Melanossomas/efeitos dos fármacos , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rab27 de Ligação ao GTP/metabolismo
13.
Int J Hyperthermia ; 38(1): 70-78, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33487077

RESUMO

INTRODUCTION: Hyperthermic Ιsolated Limb Perfusion using melphalan and TNFα (TM-HILP) is a regional chemotherapy method for advanced melanoma. PURPOSE: To explore the feasibility of the study of Circulating Melanoma Cells (CMCs) in the context of acute physiological changes induced by TM-HILP and their association with oncological outcomes. METHODS: The study included 20 patients undergoing TM-HILP for unresectable in-transit melanoma of the limbs, stage III(B/C/D). CMCs in the peripheral blood were analyzed at 5-time points from the preoperative day until day 7 from surgery using the following biomarkers: MITF, Tyrosinase mRNA, Melan-A and S100b, through quantitative RT-PCR. RESULTS: No CMCs according to Tyrosinase and Melan-A biomarkers were found in any sample. Friedman test showed significant alterations perioperatively for MITF (p < .001) and S100b (p = .001). Pairwise tests showed a significant increase of MITF levels on postoperative day 7 compared with postoperative day 1, intraoperative and preoperative levels (p < .05). Pairwise tests for S100b showed a significant difference between intraoperative sample and postoperative day 7 (p < .0001). Patients who experienced a complete response to TM-HILP (n = 12) had higher mean levels of MITF and the difference was significant at the time point immediately after the operation (0.29 ± 0.27 vs. 0.06 ± 0.06, p = .014) and on postoperative day 1 (1.48 ± 2.24 vs. 0.41 ± 0.65, p = .046). There was no association of MITF or S100b levels with 4-year disease specific survival. CONCLUSION: TM-HILP is associated with increased levels of CMCs, but there was no association of this increase with survival. Patients with complete response to HILP demonstrate higher values of MITF shortly after the operation.


Assuntos
Hipertermia Induzida , Melanoma , Quimioterapia do Câncer por Perfusão Regional , Extremidades , Estudos de Viabilidade , Humanos , Melanoma/terapia , Melfalan/uso terapêutico , Perfusão , Fator de Necrose Tumoral alfa/uso terapêutico
14.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268492

RESUMO

We have previously reported that argan oil and argan press-cake from the kernels of Argania spinosa have an anti-melanogenesis effect. Here, the effect of argan fruit shell ethanol extract (AFSEE) on melanogenesis in B16F10 cells was determined, and the mechanism underlying its effect was elucidated. The proliferation of AFSEE-treated B16F10 cells was evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the melanin content was quantified using a spectrophotometric method. The expression of melanogenesis-related proteins was determined by Western blot and real-time PCR, while global gene expression was determined using a DNA microarray. In vitro analysis results showed that the melanin content of B16F10 cells was significantly increased by AFSEE, without cytotoxicity, by increasing the melanogenic enzyme tyrosinase (TRY), tyrosinase related-protein 1 (TRP1), and dopachrome tautomerase (DCT) protein and mRNA expression, as well as upregulating microphthalmia-associated transcription factor (MITF) expression through mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38, and the cyclic adenosine monophosphate (cAMP) signaling pathway, as indicated by the microarray analysis results. AFSEE's melanogenesis promotion effect is primarily attributed to its polyphenolic components. In conclusion, AFSEE promotes melanogenesis in B16F10 cells by upregulating the expression of the melanogenic enzymes through the cAMP-MITF signaling pathway.AFSEE may be used as a cosmetics product component to promote melanogenesis, or as a therapeutic against hypopigmentation disorders.


Assuntos
AMP Cíclico/metabolismo , Frutas/química , Melaninas/biossíntese , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Sapotaceae/química , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma Experimental , Camundongos , Fosforilação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
15.
Fitoterapia ; 140: 104416, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31704261

RESUMO

Vitiligo is a common depigmentary disease characterized as diagnosis simplicity and cure difficulty in view of the ambiguity of etiology, thus novel and effective treatments are urgently needed. Paeoniflorin, the major active compound extracted from the root of Paeonia lactiflora Pall, a traditional Chinese medicine, has been validated pharmacological properties such as antioxidant stress, a theory participating in the occurrence of vitiligo, but the effect on melanogenesis is still unclear. In this study, melanosythesis effect of paeoniflorin and the potential mechanism were evaluated. We found that treatment with paeoniflorin at the concentration of 10 µg/ml significantly increased melanin content and intracellular tyrosinase activity of human melanocytes, in accordance with the elevation of protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein 1 (TRP-1). In addition, we also investigated that paeoniflorin promoted phosphorylation of cAMP-response element binding (CREB) and extracellular signal-regulated kinase (ERK) without affecting p38 and c-Jun N-terminal kinase (JNK). These results demonstrated that paeoniflorin had a synergistic effect on normal human melanocytes via ERK/CREB pathway with up-regulation of MITF and TRP-1, enhancing melanin synthesis. Meanwhile, the milder pathological changes in vitiligo mice treat with paeoniflorin also confirmed its potential in treating vitiligo. To sum up, we suggest that paeoniflorin may be a potential medicine of vitiligo treatment in clinical.


Assuntos
Glucosídeos/farmacologia , Melanócitos/efeitos dos fármacos , Monoterpenos/farmacologia , Vitiligo/tratamento farmacológico , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia/metabolismo , Oxirredutases/metabolismo , Fosforilação , Distribuição Aleatória
16.
J Cosmet Dermatol ; 19(7): 1785-1792, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31763737

RESUMO

BACKGROUND: Annona squamosa L. is a branched shrub, which is believed to be originated from the America and West Indies. Fruits of this plant are commonly known as custard apple, sugar apple, or sweetsops. A number of studies have proven a range of biological activities associated with various parts of A. squamosa. AIMS: The main aim of the present investigation was to evaluate potential inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis and its underlying mechanisms in B16F10 murine melanoma cells. METHODS: Inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis were primarily assessed by determining melanin contents. Effects of ALE on tyrosinase activity and the expression of proteins associated with melanogenesis were then determined. GC-MS analysis was carried out to identify the phytochemical profile of A. squamosa leaf extract. RESULTS: Antimelanogenic effects of ALE were found to exert through the inhibition of melanocyte inducing transcription factor (MITF) and activation of p38. GC-MS analysis identified ent-kaur-16-en-19-ol, 18-oxokauran-17-yl acetate, and ß-sitosterol as major phytochemicals. CONCLUSION: To our knowledge, this is the first study on the antimelanogenic effects of A. squamosa leaves, rationalizing the use A. squamosa leaf extract as a natural depigmentation agent for the treatment of skin diseases and the development of cosmetic products with enhanced skin-lightening capabilities.


Assuntos
Annona , Melanoma Experimental , Animais , Annona/metabolismo , Linhagem Celular Tumoral , Melaninas , Melanoma Experimental/tratamento farmacológico , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , alfa-MSH/farmacologia
17.
Artigo em Chinês | WPRIM | ID: wpr-846021

RESUMO

Objective: Based on the Chinese herbal property, the pharmacodynamic evaluation and mechanism discussion of active components were carried out through screening the active components of Chinese patent medicine in the clinical medical insurance catalog. Methods: The most frequently used main herbs were screened through the collection of anti-vitiligo Chinese patent medicine prescriptions, drug properties and material basis. The main compound types were acquired through TCMSP and TCMIP databases. The drug properties were analyzed by admetSAR method to obtain key compounds. The pharmacodynamics were observed by measuring the morphology and melanin content of adult zebrafish and larvae. The safety evaluation was indicated by the survival rate of larvae. RT-PCR was used to reveal the mechanism of the compounds at the transcriptional level. The binding ability of compounds to protein crystal structure was predicted by molecular docking. Results: The most frequently used main herbs were Carthamus tinctorius, Lithospermum erythrorhizon, Tribulus terrestris, Gentianae Radix et Rhizoma., Psoraleae Fructus, and Vernonia anthelmintica. The main compound types through TCMSP and TCMIP database were flavonoids with a total of 81. Based on the druggability and stability, the methoxyflavones kaempferide and isorhamnetin were screened out. Kaempferide (32 μmol/L), isorhamnetin (32 μmol/L) and methoxsalen (25 μmol/L) could promote the regeneration of melanin in zebrafish. Based on the zebrafish embryo model, kaempferide, isorhamnetin and methoxsalen all could accelerate melanogenesis in larvas, and the survival rates of larvas were more than 90% under effective concentration. RT-PCR showed that kaempferide and isorhamnetin upregulated the mRNA levels of MC1R and MITF genes related to melanogenesis. The results of molecular docking between the structures of proteins (MITF, TYR, TYRP1) and kaempferide, isorhamnetin, methoxsalen showed that the binding score of kaempferide or isorhamnetin was higher than that of methoxsalen. Conclusion: Kaempferide and isorhamnetin, the active ingredients in the clinical anti-vitiligo traditional Chinese medicine prescriptions, can promote the melanogenesis in zebrafish by up-regulating the MC1R/MITF signal pathway.

18.
J Dermatol Sci ; 94(1): 236-243, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30987854

RESUMO

BACKGROUND: Oxidative stress plays important roles in the pathogenesis of vitiligo. The removal of hydrogen peroxided (H2O2) has been established to be beneficial to vitiligo patients. Berberine (BBR), a natural isoquinoline alkaloid, has antioxidant activity, however, whether BBR can defend human melanocytes against oxidative injury remains to be elucidated. OBJECTIVE: In the present study, we investigated the potential protective effect of BBR against oxidative stress on an immortalized normal human melanocyte cell line PIG1. METHODS: Generally, PIG1 cells were pretreated with various concentrations of BBR for 1 h followed by exposure to 1.0 mM H2O2 for 24 h. Cell apoptosis, intracellular reactive oxygen species (ROS) levels were assessed through flow cytometry. Cell apoptosis, melanogenesis and the activation of Nrf2-ARE and Mitf signaling pathway were assayed. RESULTS: Our results showed that cell viability rose and intracellular ROS generation, cell apoptosis of melanocytes decreased significantly in response to H2O2 through pretreatment with BBR. Furthermore, We found that BBR can dramatically induce Nrf2 nuclear translocation, increase total Nrf2 levels and enhance ARE activity. Besides, Nrf2-siRNA transfection can abrogate the protection of BBR in melanocytes against oxidative injury. At last, we verified that BBR could facilitate melanogenesis function via modulation of Mitf and its target proteins. CONCLUSION: The results above suggest that BBR can protect melanocytes against oxidative stress via its anti-oxidative activity. Also, we found H2O2-induced activation of NFκB was inhibited by BBR. Therefore, it is worthy of investigation BBR as a potential drug for treatment of vitiligo.


Assuntos
Berberina/farmacologia , Melanócitos/efeitos dos fármacos , Vitiligo/tratamento farmacológico , Berberina/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Peróxido de Hidrogênio/toxicidade , Melaninas/biossíntese , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vitiligo/patologia
19.
J Dermatol Sci ; 94(1): 213-219, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30956031

RESUMO

BACKGROUND: Fargesin is commonly used in the treatment of allergic rhinitis, inflammation, sinusitis and headache. OBJECTIVE: The aim of the study is to investigate a new function of fargesin against melanin production and its underlying molecular mechanism. METHODS: B16F10 mouse melanoma cells, Melan-a and human epidermal melanocytes were treated with different concentrations of fargesin for the indicated time. The extracellular and cellular melanin content was detected by spectrometry at 490 nm and 405 nm, respectively. RT-qPCR and Western blot analysis were used to exam the expression of melanogenic enzymes and the activities of PKA/CREB and p38 MAPK pathway components. Zebrafish was used as an in vivo model for studying the function of fargesin in regulating melanogenesis. RESULTS: Fargesin effectively inhibited melanin production at moderate dose in mouse B16F10 melanoma cells, normal melanocyte cell lines and zebrafish. The expression of microphthalmia-associated transcription factor (MITF), its downstream melanogenic enzymes and tyrosinase activity were also strongly reduced by fargesin. Moreover, the increase of melanin production induced by UVB and forskolin could be fully reversed by fargesin treatment. Fargesin also effectively inhibited the activation of PKA/CREB and p38 MAPK as well as their interactions, which in turn is responsible for the expression of MITF and melanogenic enzymes. CONCLUSIONS: These results show that fargesin can function as an anti-melanogenic agent, at least in part, by inhibiting PKA/CREB and p38/MAPK signaling pathways. Therefore, fargesin and its derivatives may potentially be used for preventing hyperpigmentation disorders in the future.


Assuntos
Benzodioxóis/farmacologia , Hiperpigmentação/tratamento farmacológico , Lignanas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Animais , Benzodioxóis/uso terapêutico , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero , Humanos , Lignanas/uso terapêutico , Melanócitos/metabolismo , Camundongos , Modelos Animais , Peixe-Zebra
20.
Phytomedicine ; 58: 152877, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849679

RESUMO

BACKGROUND: Melanin plays a crucial role in protecting human skin against exposure to ultraviolet (UV) radiation. However, its overproduction induces hyperpigmentation disorders of the skin. PURPOSE: To investigate effects of phenylethyl resorcinol as one resorcinol derivative on melanogenesis and its mechanisms using B16F10 mouse melanoma cells and human epidermal melanocytes. METHODS: Effects of phenylethyl resorcinol on melanogenesis and its mechanism of action were examined using several in vitro assays (i.e., cell survival, melanin content, cellular tyrosinase activity, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and ELISAs for cyclic AMP (cAMP), protein kinase A (PKA), cAMP response element binding (CREB) protein, and mitogen-activated protein kinases (MAPKs)). RESULTS: Phenylethyl resorcinol reduced both melanin content and tyrosinase activity in these cells. Phenylethyl resorcinol also suppressed tyrosinase activity in cell-free tyrosinase enzyme assay. Although phenylethyl resorcinol decreased mRNA levels of tyrosinase and tyrosinase-related protein (TRP)-2, it did not affect mRNA levels of melanogenic gene microphthalmia-associated transcriptional factor (MITF) or TRP-1. Phenylethyl resorcinol had no effects on cAMP signaling or NF-κB signaling based on results of cyclic AMP response element (CRE)-luciferase reporter assay, cAMP production, protein kinase A (PKA) activity, Western blot assays for phosphorylated CRE-binding protein (CREB), NF-κB-luciferase reporter assay, and Western blot assays for phosphorylated NF-κB. However, phenylethyl resorcinol induced activation of activator protein-1 (AP-1) signaling. Specifically, phenylethyl resorcinol increased AP-1 reporter activity and increased phosphorylation of p44/42 MAPK, but not p38 MAPK or c-Jun N-terminal kinase (JNK). MEK1/2 and Src, upstream molecules of p44/42 MAPK were also phosphorylated by phenylethyl resorcinol. In addition, phenylethyl resorcinol-induced decreases in melanin content, tyrosinase activity, and MITF protein levels were attenuated by PD98059, a p44/42 MAPK inhibitor. CONCLUSION: These data indicate that the anti-melanogenic activity of phenylethyl resorcinol is mediated by activation of p44/42 MAPK, indicating that phenylethyl resorcinol may be a potential therapeutic agent for treating hyperpigmentation skin disorders.


Assuntos
Compostos Benzidrílicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Células Cultivadas , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperpigmentação/tratamento farmacológico , Melaninas/genética , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA