Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.984
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(7): e2400091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570869

RESUMO

Lantana camara is widely known as a garden plant, but its use for various medicinal purposes is widespread in traditional medicine. In the frame of this study, L. camara was subjected to several different extraction techniques, including supercritical carbon dioxide extraction, accelerated solvent extraction (ASE), homogenizer-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, maceration, and Soxhlet extraction. The investigation encompasses the analysis of the chemical composition alongside assessments of biological activities, such as antioxidant and enzyme-inhibition potential and cytotoxicity of the obtained extracts. The obtained results showed that the extract obtained by accelerated-solvent extraction was the richest in the content of total phenols and of individual compounds. Of the 17 components identified in total, hispidulin was detected in the highest concentration (5.43-475.97 mg/kg). In the antioxidant assays, the extracts obtained by accelerated-solvent and microwave extraction possessed the highest level of antioxidant and antiradical protection. All obtained extracts showed enzyme-inhibitory action on amylase, glucosidase, tyrosinase, and cholinesterase, showing a high potential for application against diseases induced by excessive activity of these enzymes. Cytotoxic analysis was performed on normal and tumor cells, whereby the obtained IC50 values were in the range of 7.685-79.26 µg/mL, showing the high cytotoxicity of the obtained extracts. Using Z score analysis, ASE resulted in an optimal combination of tested quality characteristics of the L. camara extracts.


Assuntos
Antioxidantes , Lantana , Extratos Vegetais , Espectrometria de Massas em Tandem , Lantana/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Solventes/química , Micro-Ondas , Relação Dose-Resposta a Droga
2.
Toxicol Res (Camb) ; 13(2): tfae052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567035

RESUMO

Objective: Storke is a leading cause of death and disability affecting million people worldwide, 80% of which is ischemic stroke (IS). Recently, traditional Chinese medicines (TCMs) have received great attentions in treating IS due to their low poisonous effects and high safety. Buyang Huanwu Decoction (BHD), a famous and classical Chinese prescription, has been used for treating stroke-induced disability for centuries. Yet, its underlying mechanism is still in fancy. Methods: We first constructed an IS model by middle cerebral artery occlusion (MCAO). Then, a metabonomics study on serum samples was performed using UHPLC-QTOF/MS, followed by multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Results: Metabolic profiling of PCA indicated metabolic perturbation caused by MCAO was regulated by BHD back to normal levels, which is in agreement with the neurobehavioral evaluations. In the OPLS-DA, 12 metabolites were screened as potential biomarkers involved in MCAO-induced IS. Three metabolic pathways were recognized as the most relevant pathways, involving one carbon pool by folate, sphingolipid metabolism and inositol phosphate metabolism. BHD significantly reversed the abnormality of 7 metabolites to normal levels. Conclusions: This is the first study to investigate the effect of BHD on IS at the metabolite level and to reveal the underlying mechanisms of BHD, which is complementary to neurobehavioral evaluation. In a broad sense, the current study brings novel and valuable insights to evaluate efficacy of TCMs, to interpret the action mechanisms, and to provide the theoretical basis for further research on the therapeutic mechanisms in clinical practice.

3.
Heliyon ; 10(7): e28736, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586342

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.

4.
Nat Prod Res ; : 1-10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586924

RESUMO

In this study, different parts (leaf, bark, and fruit) of Pittosporum eriocarpum were investigated to explore its chemical composition and biological activities. The GC-MS analysis confirmed the presence of fifty-seven, eighty-one, and forty-six compounds in leaf, fruit, and bark extract, respectively. The important identified bioactive compounds include 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid (quinic acid), falcarinol, tetradecanoic acid, and isopropyl myristate. Further, four polyphenolic compounds namely p-coumaric, chlorogenic, ferulic acid, and catechin were also identified and quantified in different parts through HPLC-PDA analysis. Of the studied parts of P. eriocapum, leaf extract contains the highest total phenolic, flavonoid, and tannin content, and exhibited potent antioxidant activity in ABTS assay. P. eriocarpum extracts also exhibited strong antimicrobial activity against gram-negative bacteria and showed considerable high protection against free radical-mediated DNA damage. To the best of our knowledge, this is the first detailed study of the chemical composition and biological activities of P. eriocarpum.

5.
Nat Prod Res ; : 1-7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586954

RESUMO

Huai Yam (Dioscoreae Rhizoma) contains many active ingredients such as flavonoids, saponins, and amino acids. In this study, an efficient method for the classification and rapid identification of yam components was established based on UPLC-Q-Exactive-MS and data post-processing techniques. First, the mass spectrometry information including the characteristic fragmentations (CFs) and neutral losses (NLs) of yam reported in the literature were summarised and a database of compounds was established. Then, the mass spectrometry data detected by the yam sample are compared with those described in database for rapid identification of target compounds. Finally, 60 compounds were identified, including 18 flavones, 2 saponins, 10 amino acids, 7 organic acids, 3 carbohydrates, 8 fatty acids and 12 others. A new strategy for identifying target constituents based on CFs and NLs was successfully established, laying the foundation for further research on yam and promoting the development of composition analysis of Traditional Chinese Medicine (TCM).

6.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560776

RESUMO

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Assuntos
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo
7.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592804

RESUMO

The carnivorous pitcher plants of the genus Nepenthes have long been known for their ethnobotanical applications. In this study, we prepared various extracts from the pitcher, stem, and leaf of Nepenthes miranda using 100% ethanol and assessed their inhibitory effects on key enzymes related to skin aging, including elastase, tyrosinase, and hyaluronidase. The cytotoxicity of the stem extract of N. miranda on H838 human lung carcinoma cells were also characterized by effects on cell survival, migration, proliferation, apoptosis induction, and DNA damage. The cytotoxic efficacy of the extract was enhanced when combined with the chemotherapeutic agent 5-fluorouracil (5-FU), indicating a synergistic effect. Flow cytometry analysis suggested that the stem extract might suppress H838 cell proliferation by inducing G2 cell cycle arrest, thereby inhibiting carcinoma cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 15 most abundant compounds in the stem extract of N. miranda. Notably, the extract showed a potent inhibition of the human RPA32 protein (huRPA32), critical for DNA replication, suggesting a novel mechanism for its anticancer action. Molecular docking studies further substantiated the interaction between the extract and huRPA32, highlighting bioactive compounds, especially the two most abundant constituents, stigmast-5-en-3-ol and plumbagin, as potential inhibitors of huRPA32's DNA-binding activity, offering promising avenues for cancer therapy. Overall, our findings position the stem extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and anti-skin-aging treatments, warranting further investigation into its molecular mechanisms and potential clinical applications.

8.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602484

RESUMO

Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 µg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.

9.
Food Res Int ; 184: 114251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609229

RESUMO

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Assuntos
Catequina , Diospyros , Doenças Neurodegenerativas , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia
10.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611838

RESUMO

The rhizome of Polygonatum cyrtonema Hua has been used as a traditional Chinese medicine for over 2000 years. The fresh Chinese herb possesses micro toxicity and is thus traditionally alternately steamed and basked nine times to alleviate the toxicity and enhance the pharmaceutical efficacy. Different processing cycles usually result in variable therapeutic effects in the processed Polygonatum cyrtonema Hua (P-PCH). However, it can be hard to tell these various P-PCHs apart at present. To identify the P-PCHs that had undergone repeated steaming one to nine times, the chemical constituents were profiled based on Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry, and the Principal Component Analysis and Cluster Analysis methods were adopted to discriminate different cycles of P-PCH. A total of 44 characteristic markers were identified, which allowed the P-PCHs to be discriminated exactly.


Assuntos
Gastrópodes , Polygonatum , Animais , Análise por Conglomerados , Espectrometria de Massas , Vapor , Cromatografia Líquida
11.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568986

RESUMO

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Melaleuca , Óleo de Melaleuca , Limoneno , Cromatografia Gasosa-Espectrometria de Massas/métodos , Árvores , Austrália , Terpenos/química , Chá , Melaleuca/química
12.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611864

RESUMO

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Assuntos
Passiflora , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Carotenoides , Frutas
13.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617795

RESUMO

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Assuntos
Ácidos Cafeicos , Dissacarídeos , Nanopartículas , Espermina/análogos & derivados , Estilbenos , Espectrometria de Massas em Tandem , Animais , Ratos , Disponibilidade Biológica , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Sci Rep ; 14(1): 8709, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622262

RESUMO

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Assuntos
Camellia , Hidroxibenzoatos , Lignanas , Camellia/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Flavonoides/análise , Sementes/química , Metabolômica/métodos , Extratos Vegetais/química , Lignanas/análise , Cumarínicos/análise
15.
Methods Mol Biol ; 2788: 19-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656506

RESUMO

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Plantas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extratos Vegetais/química , Extratos Vegetais/análise
16.
Front Pharmacol ; 15: 1359632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606171

RESUMO

Camellia oleifera is a medicine food homology plant widely cultivated in the Yangtze River Basin and southern China due to its camellia oil. Camellia oleifera bud and fruit exist simultaneously, and its bud is largely discarded as waste. However, C. oleifera bud has been used in traditional Chinese medicine to treat a variety of ailments. Thus, the purpose of this study was to identify the chemical components of C. oleifera bud ethanol extract (EE) and first evaluate its anticancer effects in non-small cell lung cancer A549 cells. Based on UHPLC-Q-Orbitrap-MS analysis, seventy components were identified. For anticancer activity, C. oleifera bud EE had remarkable cytotoxic effect on non-small cell lung cancer A549 (IC50: 57.53 ± 1.54 µg/mL) and NCI-H1299 (IC50: 131.67 ± 4.32 µg/mL) cells, while showed lower cytotoxicity on non-cancerous MRC-5 (IC50 > 320 µg/mL) and L929 (IC50: 179.84 ± 1.08 µg/mL) cells. It dramatically inhibited the proliferation of A549 cells by inducing cell cycle arrest at the G1 phase. Additionally, it induced apoptosis in A549 cells through a mitochondria-mediated pathway, which decreased mitochondrial membrane potential, upregulated Bax, activated caspase 9 and caspase 3, and resulted in PARP cleavage. Wound healing and transwell invasion assays demonstrated that C. oleifera bud EE inhibited the migration and invasion of A549 cells in a dose-dependent manner. The above findings indicated that C. oleifera bud EE revealed notable anticancer effects by inhibiting proliferation, inducing apoptosis, and suppressing migration and invasion of A549 cells. Hence, C. oleifera bud ethanol extract could serve as a new source of natural anticancer drugs.

17.
J Ethnopharmacol ; 329: 118134, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The nature of Chinese medicine is a unique index to measure its efficacy. Generally, treating the hot syndrome with cold nature medicine and vice versa. Ginseng medicines, a renowned Chinese medicine known for its qi tonifying action, encompasses various herbal materials such as ginseng, red ginseng, and black ginseng (GS, RG, and BG, respectively), ginseng leaves (GL), and American ginseng (AG), which exhibited different natures, thought contained similar ginsenosides. This traditional effect of GS and RG "reinvigorate the pulse for relieving qi depletion". It is closely linked to anti-heart failure (HF), HF is a clinical manifestation of deficiency of "heart-qi". However, the elucidation of the mechanism underlying the anti-HF effects of ginseng medicines with different natures remains a significant challenge. AIM OF THE STUDY: To elucidate pharmacological mechanisms underlying the effect of ginseng medicines on HF, and to identify biomarkers associated with their various natures. Furthermore, it provides the basis for the different applications of ginseng medicines with various natures. MATERIALS AND METHODS: This study established a rat model of HF induced by isoproterenol (ISO) combined with a specific diet. Four representative hot/cold herbs were selected as compared references for the medicine natures. The divergent effects of these herbs on the HF model were investigated by analyzing RNA-seq data to identify genes expressed differentially. Additionally, pathways associated with medicine natures were obtained using KEGG. Furthermore, UPLC-QqQ-MS/MS, as well as ELISA, were used to measure indexes associated with the nervous system, energy metabolisms, and endocrinology systems, such as BNP, CK, IL-1, T3, T4, cAMP, cGMP, AD, adrenal hormones (DOC, CORT, and COR), progestogens (pregnenolone, P, 17-OH-PR, and 17-OH-P), androgens (DHEA, A4, and T), and estrogens hormones (E2). RESULTS: All ginseng medicines demonstrated varying levels of efficacy in alleviating HF and GS exhibited a significant protective effect on HF. The ginseng medicines with qi tonifying primarily achieve their effect by enhancing the levels of adrenal hormones (DOC, CORT, and COR), T4, elevation of cAMP/cGMP, and activation of AchE. Warm nature qi tonifying ginseng medicines increased the levels of 17-OH-PR and P while decreasing 17-OH-P and the ratio of E2/T. On the other hand, cold nature qi tonifying ginseng medicines decreased the levels of A4 and T while increasing the ratio of E2/T. CONCLUSION: Overall, the effects of warm nature ginseng medicines are stronger on HF compared to cold nature ginseng medicines. Our research firstly reported that the E2/T ratio, progestogens (17-OH-PR, 17-OH-P, and P), and androgens (A4 and T) have been identified as significant biomarkers for discerning the mechanism differences of ginseng medicines with differences natures in treatment of HF.


Assuntos
Biomarcadores , Insuficiência Cardíaca , Panax , Ratos Sprague-Dawley , Panax/química , Animais , Insuficiência Cardíaca/tratamento farmacológico , Masculino , Ratos , Extratos Vegetais/farmacologia , Isoproterenol , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Modelos Animais de Doenças
18.
J Ethnopharmacol ; 329: 118146, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604512

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Agrimonia pilosa Ledeb. (Rosaceae, A. pilosa) has been used in traditional medicine in China, Japan, Korea, and other Asian countries for treatment of acute and chronic enteritis and diarrhea. Secondary metabolites have been isolated and tested for biological activities. It remains unclear in terms of its potential components of anti-colorectal cancer properties. AIM OF THE STUDY: The study aimed to how extracts from A. pilosa and their components influenced tumor microenvironment and the colorectal tumor growth in vivo on AOM/DSS induced colorectal cancer mice, the metabolites of A. pilosa was also been studied. MATERIALS AND METHODS: Different methods have been used to extract different parts of A. pilosa. And the anti-proliferation effect of these extracts on colon cancer cells have been tested. The components of A. pilosa and its metabolites in vivo were analyzed by UPLC-QTOF-MS/MS. The anti-colorectal cancer (CRC) effects of A. pilosa and its components in vivo were studied on AOM/DSS induced CRC mice. The effects of constituents of A. pilosa on the composition of immune cells in tumor microenvironment (TME) were analyzed by flow cytometry. 16 S rDNA technology was used to analyze the effect of administration on the composition of intestinal microflora. Pathological section staining was used to compare the morphological changes and molecular expression of intestinal tissue in different groups. RESULTS: The constituent exists in root of A. pilosa showed the strongest anti-proliferation ability on colon cancer cells in vitro. The extract from the root of A. pilosa could attenuate the occurrence of colorectal tumors induced by AOM/DSS in a concentration-dependent manner. Administration of the extract from the root of A. pilosa could affect the proportion of γδT cells, tumor associated macrophages and myeloid derived suppressor cells in TME, increasing the proportion of anti-tumor immune cells and decrease the immunosuppressive cells in the TME to promote the anti-tumor immune response. The administration of the extract adjusted the composition of gut microbiota and its components Agrimoniin and Agrimonolide-6-o-glucoside showed the strongest anti-CRC effect in vivo with adjusting the gut microbiota differently. CONCLUSIONS: The extract from root of A. pilosa showed anti-colorectal cancer effects in vivo and in vitro, affecting the composition of gut microbiota and the anti-tumor immune response. Within all components of A. pilosa, Agrimoniin and Agrimonolide-6-o-glucoside showed remarkable anti-CRC efficiency in vivo and in vitro. Besides, the metabolites of extract from root of A. pilosa in gastrointestinal tract mainly composed of two parts: Agrimonolide-related metabolites and Urolithins. The extract from root of A. pilosa could contribute to potential drugs for assisting clinical anti-colon cancer therapy.


Assuntos
Agrimonia , Antineoplásicos Fitogênicos , Neoplasias Colorretais , Extratos Vegetais , Animais , Agrimonia/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Extratos Vegetais/farmacologia , Camundongos , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Masculino , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Microbioma Gastrointestinal/efeitos dos fármacos
19.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636190

RESUMO

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Assuntos
Interações Ervas-Drogas , Absorção Intestinal , Mucosa Intestinal , Levofloxacino , Ratos Sprague-Dawley , Animais , Levofloxacino/farmacologia , Levofloxacino/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Ratos , Masculino , Mucosa Intestinal/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacocinética
20.
J Pharm Biomed Anal ; 245: 116157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636192

RESUMO

Penthorum chinense Pursh (PCP), as a traditional medicine of Miao nationality in China, is often used for the treatment of various liver diseases. At present, information regarding the in vivo process of PCP is lacking. Herein, a sensitive and robust ultra-performance liquid chromatography tandem with mass spectrometry (UPLC-MS/MS) was developed and validated for the quantification of several components to study their pharmacokinetics, tissues distribution and excretion in normal and acute alcoholic liver injury (ALI) rats. Prepared samples were separated on a Thermo C18 column (4.6 mm × 50 mm, 2.4 µm) using water containing 0.1 % formic acid (A) and acetonitrile (B) as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) mode for each component. The validated UPLC-MS/MS assay gave good linearity, accuracy, precision, recovery rate, matrix effect and stability. This method was successfully applied to the pharmacokinetics, tissue distribution and excretion in normal and acute ALI rats. There were differences in pharmacokinetic process, tissue distribution and excretion characteristics, indicating that ALI had a significant influence on the in vivo process of PCP in rats. The research provided an experimental basis for the study of PCP quality control and further application in the clinic.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Masculino , Medicamentos de Ervas Chinesas/farmacocinética , Distribuição Tecidual , Reprodutibilidade dos Testes , Hepatopatias Alcoólicas/metabolismo , Espectrometria de Massa com Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA