Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120628, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520856

RESUMO

Advanced oxidation processes have been widely applied as a post-treatment solution to remove residual organic compounds in water reuse schemes. However, UV/TiO2 photocatalysis, which provides a sustainable option with no continuous chemical addition, has very rarely been studied to treat anaerobically treated effluents. In the current study, the removal of organics and nutrients from an anaerobic membrane bioreactor (AnMBR) effluent is evaluated during adsorption and photocatalysis processes under various conditions of TiO2 dose and UV intensity and compared to the effluent from an aerobic membrane bioreactor (AeMBR). The sequence for preferential adsorption on TiO2 was found to be phosphorus, inorganic carbon and then ammonia/organic carbon were found. The competing effect between the organics and nutrients, along with the low UV transmission efficiency caused by the need for high doses of TiO2, ultimately compromise the organic removal efficiency in the AnMBR permeate. TiO2 dosage was found to have a greater impact than UV intensity on improving the overall removal performance as nutrients are competing for the adsorption site but are not photodegraded. Under the same operational condition, the UV/TiO2 photocatalysis displayed a higher removal efficiency of organic matter and phosphorus in the AeMBR effluent due to a lower initial organics concentration and absence of ammonia as compared to the AnMBR effluent.


Assuntos
Amônia , Eliminação de Resíduos Líquidos , Anaerobiose , Carbono , Fósforo , Reatores Biológicos
2.
Bioresour Technol ; 397: 130474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395234

RESUMO

This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.


Assuntos
Acinetobacter , Fósforo , Esgotos , Nitrogênio , Fosfatos , Reatores Biológicos , Eliminação de Resíduos Líquidos
3.
Chemosphere ; 349: 140786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013026

RESUMO

The solar-powered oxidation ditch-membrane bioreactors (SOD-MBR) system was developed and operated with long solid retention times (SRTs) of 80 and 160 days. The aim was to investigate the effects of using a long SRT and antibiotics in building wastewater on the stability of nutrient removal, as well as membrane fouling. An increase in the SRT from 80 days to 160 days did not significantly affect the performance of the SOD-MBR system. Ciprofloxacin and Sulfamethoxazole removal efficiencies were 94.47 ± 1.54% and 87.54 ± 24.7%. However, the presence of antibiotics resulted in lower removal efficiencies for NH4+-nitrogen and phosphorus and stimulated the production of extracellular polymeric substances (EPS), particularly proteins in L-EPS and T-EPS of the foulant. FTIR and FEEM analysis revealed that the microbial sludge primarily consisted of proteins, carbohydrates, and lipids. Furthermore, the relative abundance analysis of microbial communities identified bacteria associated with nitrogen removal in the SOD-MBR system, including Anammox, AOB (ammonia oxidizing bacteria), DNB (denitrifying bacteria), and NOB (nitrite oxidizing bacteria), with a total of 25 genera. The majority of these bacteria were stimulated by the presence of antibiotics, resulting in higher relative abundance. Finally, the SOD-MBR system achieved energy savings of 97.38% by utilizing photovoltaic (PV) technology.


Assuntos
Microbiota , Águas Residuárias , Antibacterianos/farmacologia , Esgotos , Bactérias , Nutrientes , Reatores Biológicos/microbiologia , Nitrogênio , Membranas Artificiais , Superóxido Dismutase
4.
Bioprocess Biosyst Eng ; 47(2): 223-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142425

RESUMO

Anaerobic succinate fermentations can achieve high-titer, high-yield performance while fixing CO2 through the reductive branch of the tricarboxylic acid cycle. To provide the needed CO2, conventional media is supplemented with significant (up to 60 g/L) bicarbonate (HCO3-), and/or carbonate (CO32-) salts. However, producing these salts from CO2 and natural ores is thermodynamically unfavorable and, thus, energetically costly, which reduces the overall sustainability of the process. Here, a series of composite hollow fiber membranes (HFMs) were first fabricated, after which comprehensive CO2 mass transfer measurements were performed under cell-free conditions using a novel, constant-pH method. Lumen pressure and total HFM surface area were found to be linearly correlated with the flux and volumetric rate of CO2 delivery, respectively. Novel HFM bioreactors were then constructed and used to comprehensively investigate the effects of modulating the CO2 delivery rate on succinate fermentations by engineered Escherichia coli. Through appropriate tuning of the design and operating conditions, it was ultimately possible to produce up to 64.5 g/L succinate at a glucose yield of 0.68 g/g; performance approaching that of control fermentations with directly added HCO3-/CO32- salts and on par with prior studies. HFMs were further found to demonstrate a high potential for repeated reuse. Overall, HFM-based CO2 delivery represents a viable alternative to the addition of HCO3-/CO32- salts to succinate fermentations, and likely other 'dark' CO2-fixing fermentations.


Assuntos
Dióxido de Carbono , Ácido Succínico , Fermentação , Dióxido de Carbono/farmacologia , Sais , Succinatos , Escherichia coli , Carbonatos/farmacologia
5.
Bioprocess Biosyst Eng ; 46(11): 1613-1625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656256

RESUMO

This study investigated the MBR performance, sludge morphology, and membrane fouling potential in treating sunflower oil refinery wastewater containing high oleic acid at three different SRTs of 10 days, 40 days, and infinite. The analysis of mixed liquor morphology including sludge volume index, PSD, EPS, and SMP showed that the sludge flocs compressibility and bioflocculation considerably improved at 40-days SRT. Additionally, at this SRT, the mixed liquor O&G, COD, and SMP accumulation were low, and the microbial activity and COD removal were enhanced. The gas chromatography/mass spectrometry analysis results confirmed the formation of three different new compounds related to non-readily biodegradable recalcitrant oily compounds and SMP at all SRTs. The analysis of mixed liquor EPS, PSD, SMP, and effluent COD at three different SRTs suggests that under the industrial conditions of MBR operation treating SORW with high oleic acid, the optimal operating conditions are predicted to be at 40-days SRT.


Assuntos
Helianthus , Águas Residuárias , Esgotos/química , Ácido Oleico , Óleo de Girassol , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos
6.
Waste Manag ; 170: 62-74, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549528

RESUMO

Volatile fatty acids (VFAs) supplementation in ruminants' diet as a source of energy and chemical precursors and their effect on animal's physiology and well-being has long been of scientific interest. Production of VFAs through anaerobic digestion of agro-industrial residues not only creates value but also presents an alternative sustainable approach for ruminant feed supplementation. Therefore, this study aimed to investigate the bioconversion of agro-industrial residues produced in large quantities such as apple pomace (AP), thin stillage (Ts), and potato protein liquor (PPL) to VFAs, fully complying to regulations set for ruminant feed supplement production. In this regard, batch acidogenic fermentation assays (pH 6-10) and semi-continuous immersed membrane bioreactor (iMBR) were applied. In batch assays, at pH 10 the co-digestion of Ts and PPL produced the highest VFAs concentration (14.2 g/L), indicating a yield of 0.85 g CODVFAs/g volatile solids (VS)added. The optimum batch condition was then applied in the iMBR for in situ fermentation and recovery of VFAs at different organic loading rates (OLR). With increasing the OLR to 3.7 gVS/L.day, the highest VFAs concentration of 28.6 g/L (1,2 g CODVFAs /gVSadded) was achieved. Successful long-term (114 days) membrane filtration was conducted in a media with a maximum of 40 g/L of total solids (TS), facing irreversible membrane fouling in the final stages. Acidogenic fermentation using an iMBR has the potential to play an important role in the future of feed additive provision through the biorefining of agro-industrial wastes via the carboxylate platform, given the role of VFAs production from organic residues.

7.
Sci Total Environ ; 852: 158586, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075441

RESUMO

The anaerobic membrane bioreactor (AnMBR) has gained huge attention as a municipal wastewater (MWW) treatment process that combined high organics removal, a low sludge yield and bioenergy recovery. In this study, a 20 L AnMBR was set up and operated steadily for 70 days in temperate conditions with an HRT of 6 h and a flux of 12 LMH for the treatment of real MWW, focusing on the behavior of the major elements (C, N, P and S) from an elemental balance perspective. The results showed that the AnMBR achieved more than 85 % COD removal, a low sludge yield (0.081 gVSS/gCODremoved) and high methane production (0.31 L-CH4/gCODremoved) close to the theoretical value. The elemental flow analysis revealed that the AnMBR converted 77 % of the influent COD to methane (57 % gaseous and 20 % dissolved) and 6 % of the COD for sludge production. In addition, the AnMBR converted 34 % of the total carbon to energy-generated carbon, and only 3 % was in the form of CO2 in the biogas for further upgradation, which was in line with the concept of carbon neutrality. Since little nitrogen or phosphorus were removed, the permeate was nutrient-rich and further treatment to recover the nutrients would be required. This study illustrates the superior performance of the AnMBR for MWW treatment with a microscopic view of elemental behavior and provides a reference for implementing the mainstream AnMBR process in carbon-neutral wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biocombustíveis , Carbono , Dióxido de Carbono , Membranas Artificiais , Reatores Biológicos , Purificação da Água/métodos , Metano , Fósforo , Nitrogênio
8.
Chemosphere ; 309(Pt 1): 136537, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150485

RESUMO

Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasibility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m-3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 °C. Results showed that specific methane production of UASB was 249 ± 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m-3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side-stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 µm) in the ultrafiltration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Águas Residuárias/química , Biocombustíveis , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Alimentos , Fertilizantes , Metano/química , Reatores Biológicos , Nitrogênio , Nutrientes , Solo
9.
Chemosphere ; 306: 135527, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780994

RESUMO

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Assuntos
Compostos de Amônio , Purificação da Água , Membranas Artificiais , Osmose , Fósforo , Cloreto de Sódio , Águas Residuárias , Purificação da Água/métodos
10.
Environ Sci Pollut Res Int ; 29(32): 48620-48637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35199268

RESUMO

The present study evaluates the performance of an indigenously developed ceramic ultrafiltration (UF) membrane in a lab-scale membrane bioreactor (MBR) process to treat real tannery effluent with varying organic loading (1500-6000 mg/L). UF membrane was prepared by the coating of bentonite clay on tubular clay-alumina macroporous support. The membrane surface was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET adsorption-desorption, contact angle measurement, and atomic force microscopy. In the side-stream MBR process, sewage sludge from a local sewage treatment plant was used as an activated sludge source with a constant sludge retention time of 30 days. Membrane filtration was performed in cross-flow mode using a single-channel membrane module. Artificial neural network (ANN) modeling tool was used to analyze the influence of various independent input variables, namely, the hydraulic retention time (4-10 h), mixed liquor suspended solid (MLSS) concentration (2-8 g/L), and influent COD concentration (1500-6000 mg/L) on COD removal (%) with feed-forward backpropagation method. Membrane study was done at a transmembrane pressure of 4.3 bar and feed flow rate of 7.5 L/min to observe the flux declination and fouling of the UF membrane with time. Average COD and BOD concentrations obtained in the treated effluent were 147.56 and 31 mg/L, respectively, and chromium concentration was < 0.1 mg/L; thus, treated effluent quality was found to be suitable for industrial recycling purposes apart from the safe environmental discharge. An in-depth study was undertaken to understand the removal mechanism in the MBR process, nature and extent of membrane fouling, changes in the morphology of the UF membrane, surface wettability, and surface topology by detailed surface characterization of the membrane pre- and post-filtration.


Assuntos
Ultrafiltração , Purificação da Água , Reatores Biológicos , Cerâmica , Argila , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
11.
Bioresour Technol ; 347: 126694, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35017092

RESUMO

This work aimed at revealing the distribution characteristics of phosphorus (P) containing substances in an aerobic granular sludge-membrane bioreactor (AGS-MBR). During the long running period (180 days) with no sludge discharge, AGS was successfully cultivated on day 20, and the system performed well in removing organic pollutants and total nitrogen (TN). However, the removal of total P (TP) showed a fluctuant tendency, and P was found to distribute in all the phases of the system. In the intracellular phase, it occupied the largest ratio all through the period. In AGS, inorganic P (IP) was measured to be about 74.4-77.8% of TP, with non-apatite IP (NAIP) composing 57.5-69.6%, while in organic P (OP), the ratio of monoester and diester phosphate was in the range of 19-26.9% and 12-13.5%, respectively. The presence of highly releasable and bioavailable P (NAIP + OP) in AGS implied that it might be a potential P resource for utilization.


Assuntos
Corrida , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
12.
Membranes (Basel) ; 11(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34832103

RESUMO

The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.

13.
Sci Total Environ ; 797: 148773, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34298362

RESUMO

Personal care products (PCPs) are contaminants of emerging concern because of their continuous input into the environment. In this study, membrane bioreactor (MBR) and constructed wetland (CW) methods were used to investigate the effect and mechanism of conventional pollutant and PCP removal from greywater. The effluent of both the MBR- and CW-treated greywater met the reclaimed water reuse standard in China. Conventional pollutants and five target PCPs had a higher removal efficiency in the MBR than in the CW. The removal rates of the PCPs, including Tuina musk (AHTN), were >80% using MBR and CW methods. The main pathway of removing PCPs in the MBR was sludge adsorption and biodegradation, whereas the contribution of the membrane module was weak. The main pathway of removing PCPs in the CW was the combined action of plant absorption, microbial biodegradation, and substrate adsorption, depending on the PCP type. Ethyl hexyl methoxycinnamate (EHMC) has strong biological oxidizability and was mainly removed by biodegradation, whereas Jiale musk (HHCB) and AHTN were mainly removed by adsorption. Six types of CW substrates were investigated, and perlite showed the best adsorption effect for the five target PCPs. The optimal substrate adsorption pH was 7. This study provides important technical information on the effective removal of conventional pollutants and PCPs in greywater and the preparation of high-quality reclaimed water.


Assuntos
Cosméticos , Poluentes Químicos da Água , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
14.
Bioresour Technol ; 335: 125248, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33991878

RESUMO

In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.


Assuntos
Reatores Biológicos , Membranas Artificiais , Catálise , Águas Residuárias
15.
Sci Total Environ ; 779: 146373, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030249

RESUMO

A near-zero waste treatment system for food processing wastewater was developed and studied. The wastewater was treated using an anaerobic membrane bioreactor (AnMBR), polished using an outdoor photobioreactor for microalgae cultivation (three species were studied), and excess sludge was treated using hydrothermal carbonization. The study was conducted under arid climate conditions for one year (four seasons). The AnMBR reduced the total organic carbon by 97%, which was mostly recovered as methane (~57%) and hydrochar (~4%). Microalgal biomass productivity in the AnMBR effluent ranged from 0.25 to 0.8 g·L-1·day-1. Nitrogen (N) and phosphorous (P) uptake varied seasonally, from 18 to 45 mg·L-1·day-1 and up to 5 mg·L-1·day-1, respectively. N and P mass balance analysis demonstrated that the process was highly efficient in the recovery of nitrogen (~77%), and phosphorus (~91%). The performance of the microalgal culture changed among seasons because of climatic variation, as a result of variation in the wastewater chemistry, and possibly due to differences among the microalgal species. Effluent standards for irrigation use were met throughout the year and were achieved within two days in summer and 4.5 days in winter. Overall, the study demonstrated a near-zero waste discharge system capable of producing high-quality effluent, achieving nutrient and carbon recovery into microalgae biomass, and energy production as biogas and hydrochar.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Carbono , Manipulação de Alimentos , Nitrogênio , Nutrientes , Água
16.
Sci Total Environ ; 783: 146850, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865120

RESUMO

Anaerobic membrane bioreactors (AnMBRs) represent an emerging environmental biotechnology platform with the potential to simultaneously recover water, energy, and nutrients from concentrated wastewaters. The removal and beneficial capture of nutrients from AnMBR permeate has yet to be fully explored, therefore this study sought to foster iron phosphate recovery through a tertiary coagulation process, as well as characterize the recovered nutrient product (RNP) and assess its net phosphorus release, diffusion, and availability for plant uptake. One of the primary goals of this study was to optimize the dose of the coagulant, ferric chloride, and coagulant aid, aluminum chlorohydrate (ACH), for continuous application to the coagulation-flocculation-sedimentation (CFS) unit of an AnMBR pilot plant treating municipal wastewater, through controlled bench-scale jar tests. Anaerobic systems present unique challenges for nutrient capture, including high, dissolved hydrogen sulfide concentrations, along with settleability issues. The addition of the coagulant aid increases settleability, while enhancing phosphorus removal by up to 20%, decreasing iron demand. Water quality analysis indicated that a variety of factors affect nutrient capture, including the COD (chemical oxygen demand) concentration of the permeate and the limiting coagulant dose. COD >200 mg/L was shown to decrease the phosphorus removal efficiency by up to 15%. A combination of inductively coupled plasma optical emission spectrometer (ICP-OES) elemental analysis, inductively coupled plasma mass spectrometer (ICP-MS) elemental analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES) spectroscopy analysis was used to characterize the P-rich RNP which revealed a 2.58% w/w phosphorus content and the lack of a well-defined crystalline structure. Detailed studies on resin extractable phosphorus to assess the plant uptake potential also demonstrated that iron-based P-rich RNPs may not be an effective fertilizer product, as they can act as a phosphorus sink in some agricultural systems instead of a source.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Ferro , Nutrientes , Esgotos , Enxofre , Águas Residuárias
17.
J Environ Manage ; 278(Pt 1): 111403, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126194

RESUMO

Baker's yeast industries (BYI) generate highly polluted effluents, especially vinasse from yeast separators, with very high chemical oxygen demand (COD), nitrogen, sulphate and salts, mainly potassium and calcium. Anaerobic treatment is the most commonly applied method for treating BYI wastewaters. However, it is quite challenging to obtain a high performance due to the difficulties in biomass retention. Moreover, it does not provide compliance with COD and color discharge limits when used as a sole treatment process. In this context, a pilot scale anaerobic membrane bioreactor, which provides excellent biomass retention, was operated to investigate its treatment performance for vinasse from a BYI. The reactor achieved a COD removal between 48% and 92% up to a volumetric load of 10 kg COD m3 d-1. A specific methane production of 0.37 m3 CH4 kg-1 CODremoved was observed in the study. On the other hand, passage of inert organic compounds through membrane deteriorated permeate quality and treatment efficiency. High alkalinity and pH led to the accumulation of calcium precipitates, which reduced volatile solids fraction of sludge and biomass activity in the reactor. The present study showed the operational challenges and potential drawbacks of AnMBR systems for BYI wastewater treatment. The experience gained in the pilot system can be utilized in the design and operation of full scale AnMBRs for high strength industrial effluents.


Assuntos
Beta vulgaris , Águas Residuárias , Anaerobiose , Reatores Biológicos , Indústrias , Membranas , Metano , Melaço , Eliminação de Resíduos Líquidos
18.
J Environ Health Sci Eng ; 18(2): 383-393, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312567

RESUMO

BACKGROUND: Landfill leachate has been known as non-biodegradable/hardly-biodegradable wastewater, which contains significant amount of soluble organic and inorganic compounds. However, membrane bioreactor (MBR) technology have become a more viable treatment option for complex and recalcitrant compounds compared to activated sludge systems. METHODS: This study aims at evaluating the performance of anaerobic membrane bioreactor (AnMBR) for the treatment of middle/old-aged landfill leachate (LFL).AnMBR was operated at different hydraulic retention times (HRTs) (48-12 h) and relaxation and backwashing (30 min-5 min, 5 min-0.5 min) periods. Additionally, Air stripping (pH 8, 24 g lime/L, 1.4 L/s air flow rate) as a pretreatment was evaluated prior to AnMBR. RESULTS: Air stripping removed about 90%, 25%, and 64% NH4 +, COD (Chemical Oxygen Demand) and color (RES620), respectively. The best results were obtained in combined air stripping-AnMBR operation corresponding to 95%, and 83% overall removals of color, and COD removals, respectively. Maximum methane yield and COD removal rate in AnMBR were 0.35 L methane/g COD removed and 5 gCOD removed /L.d, respectively. CONCLUSION: Pretreatment provided higher AnMBR flux that reached to 5.5LMH but increased fouling frequency due to the calcium precipitates in AnMBR which was verified with SEM-EDX analysis. Additionally, DEHP and DINP were not detected in permeate indicating AnMBR was successful for removing these micropollutants. This study showed that pretreatment clearly increased methane yield and COD removal rate.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33117773

RESUMO

Natural products and herbal therapies represent a thriving field of research, but methods for the production of plant-derived compounds with a significative biological activity by synthetic methods are required. Conventional commercial production by chemical synthesis or solvent extraction is not yet sustainable and economical because toxic solvents are used, the process involves many steps, and there is generally a low amount of the product produced, which is often mixed with other or similar by-products. For this reason, alternative, sustainable, greener, and more efficient processes are required. Membrane processes are recognized worldwide as green technologies since they promote waste minimization, material diversity, efficient separation, energy saving, process intensification, and integration. This article describes the production, characterization, and utilization of bioactive compounds derived from renewable waste material (olive leaves) as drug candidates in breast cancer (BC) treatment. In particular, an integrated membrane process [composed by a membrane bioreactor (MBR) and a membrane emulsification (ME) system] was developed to produce a purified non-commercially available phytotherapic compound: the oleuropein aglycone (OLA). This method achieves a 93% conversion of the substrate (oleuropein) and enables the extraction of the compound of interest with 90% efficiency in sustainable conditions. The bioderived compound exercised pro-apoptotic and antiproliferative activities against MDA-MB-231 and Tamoxifen-resistant MCF-7 (MCF-7/TR) cells, suggesting it as a potential agent for the treatment of breast cancer including hormonal resistance therapies.

20.
Sci Total Environ ; 741: 140233, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570070

RESUMO

Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eletricidade , Eletrodos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA