Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2354: 111-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448157

RESUMO

Gene technology and editing are not only biotechnological techniques for creating new crop varieties but are also tools for researchers to discover gene functions. Field trial following laboratory experiments is an important step in order to evaluate new functions since many phenotypes, and combinations thereof, are difficult to detect in controlled environments and molecular analyses are nowadays possible to do in the field. Here we describe a standard protocol for creating new potato lines and producing seed tubers for field trials within 1 year.


Assuntos
Solanum tuberosum , Tubérculos , Plantas Geneticamente Modificadas , Solanum tuberosum/genética
2.
Physiol Mol Biol Plants ; 15(4): 359-65, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23572946

RESUMO

An efficient micropropagation system for Pinellia ternate (Thunb) Briet, a traditional Chinese medicinal plant, has been developed. Petiole and lamina of P. ternate were used as explants and cultured on Murashige and Skoog (MS) medium containing different concentrations of different plant growth regulators. The results indicated that low concentration of 2,4-dicholorophenoxy acetic acid (2,4-D), indole-3-acetic acid (IAA) and α-naphthalene acetic acid (NAA) were suitable for micro-tuber induction, but callus induction rate increased with increasing concentrations of growth regulators. Tubers induction rates of petiole and leaf were (81.8 %-100 %) and (89.4 %-96.0 %) respectively, when 0.2 mg l(-1) 2, 4-dicholorophenoxy acetic acid, indole-3-acetic acid or α-naphthalene acetic acid were present in the medium. Tubers induction rates of petiole and leaf cultured on MS medium supplemented with 0.2-0.5 mg l(-1) 6-benzyl amino purine (6-BAP) were (94.1 %-100 %) and (96.0 %-100 %) respectively. When the concentration of 2,4-dicholorophenoxy acetic acid, α-naphthalene acetic acid and 6-benzyl amino purine was increased to 2.0 mg l(-1), callus induction rates of petiole and leaf were 100 % and 98.2 %, 91.0 % and 36.0 %, 62.3 % and 70.0 %, respectively. Different concentration of kinetin (KT) and zeatin (ZT) had no significant effect on micro-tuber induction of petiole. Most petioles showed polarity during the cultivation of explants, when supplemented with different concentrations of auxin or cytokinin in the MS medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA