Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Curr Rheumatol Rev ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38584559

RESUMO

BACKGROUND: Osteoarthritis (OA) is becoming a major medical burden worldwide due to changing lifestyles and aging populations. Osteoarthritis is a disease characterized by a variety of anatomic and physiological changes to joints, including cartilage degradation, bone remodeling, and the formation of osteophytes. These changes cause pain, stiffness, swelling, and limitations in joint function. Glucosamine serves as a fundamental constituent for cartilage, the resilient connective tissue responsible for cushioning joints. Glucosamine Sulphate Potassium Chloride (GSPC) supplementation is widely employed to mitigate symptoms linked to osteoarthritis, a degenerative joint disorder hallmarked by cartilage degradation. AIM: Palliative care aims at minimizing pain and disability and improving function, performance, and quality of life. In this study, the emulgel formulation of GSPC was developed and checked for its potential. OBJECTIVE: Currently, OA does not have a definitive treatment. Since conventional dosage forms cannot deliver the active drug content at a predefined target site in a predictable manner throughout the treatment period, a new carrier system is always required. Considering their reduced size, targeting potential, and site specificity, nanocarrier-based approaches could hold an answer to shortcomings associated with conventional routes. Thus, the objective of the current study was to formulate and characterize glucosamine sulphate potassium chloride-loaded emulgel for the treatment of osteoarthritis. METHODS: Microemulsion of glucosamine sulphate potassium chloride was formulated using a spontaneous emulsification method comprising of oleic acid (oil phase), Tween 80, Tween 20 (surfactant) and PEG 400, Span 80 (co-surfactant), and distilled water (aqueous phase). The microemulsions were evaluated for surface morphology, globule size, poly-dispersibility index (PDI), zeta potential, and viscosity, and the final batch of microemulsions was selected. RESULT: The optimized microemulsion contained 35% co-surfactant (propylene glycol), 20% surfactant (Tween 20), and 15% oil (oleic acid) and glucosamine sulphate potassium chloride in a dose of 60 mg, which has sufficient drug loading capacity with a droplet size of 182 nm for optimized formulation. The optimized microemulsion formulation was added to gel prepared by Carbopol 934 in a 1:1 (w/w) ratio, leading to the formulation of glucosamine sulphate potassium chloride- containing emulgel. The prepared emulgel was further evaluated for viscosity, drug content, pH, and in-vitro drug release. Emulgel formulation (F6) showed 88% drug release after 6 hours, and it followed the Higuchi model. CONCLUSION: Glucosamine Sulphate Potassium Chloride (GSPC) is used in the treatment of OA by increasing the production of proteoglycans, which can cause the cartilage to break down. Emulgel formulation (F3) showed 75.41% drug release, and formulation (F6) showed 88% drug release after 6 h. Therefore, it may be concluded that an emulgel of GSPC can be used as a controlled-release dosage form of the drug for local application in OA.

2.
Int J Pharm ; 655: 124031, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38521375

RESUMO

Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.


Assuntos
Nitroimidazóis , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Pulmão , Inaladores Dosimetrados , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tensoativos , Solubilidade , Sistemas de Liberação de Medicamentos , Emulsões , Disponibilidade Biológica
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124009, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335588

RESUMO

Microemulsion is usually a transparent and isotropic liquid mixture composed of oil phase, water phase, surfactant and cosurfactant. The surfactant-framed nanoscale droplets in the microemulsion can penetrate into the skin surface to reduce its barrier function. This makes microemulsion an ideal preparation for the transdermal drug delivery. The permeability of microemulsion may be further enhanced when botanical essential oils that can dissolve the stratum corneum are used as the oil phase. However, the volatility of essential oils is possible to shorten the retention time of the microemulsion on the skin surface. Therefore, analytical methods are required to understand the volatilization process of the microemulsion composed of essential oils to develop the reasonable topical drug carrier system. In this research, Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflection (ATR) accessory cooperated with two-dimensional correlation spectroscopy (2DCOS) to elucidate the volatilization processes of some microemulsions composed of peppermint essential oil. Principal component analysis (PCA) and moving-window two-dimensional correlation spectroscopy (MW2DCOS) revealed the multiple stages of the volatilization processes of the microemulsions. Synchronous 2D correlation infrared spectra indicated the compositional changes during each stage. It was found that the successive volatilizations of ethanol, water and menthone were the major events during the volatilization process of the microemulsion composed of peppermint essential oil. Ethanol can accelerate the volatilization of water, while the composite herbal extract seemed to not influence the volatilization of the other ingredients. After a 20-min-long volatilization process, the remaining microemulsion still contained considerable peppermint essential oil to affect the skin. The above results showed the feasibility of developing the microemulsion composed of peppermint essential oil for the transdermal drug delivery of composite herbal extract. This research also proved that the combination of ATR-FTIR spectroscopy and 2DCOS was valuable to study the volatilization process of the microemulsion.


Assuntos
Óleos Voláteis , Volatilização , Mentha piperita , Tensoativos/química , Água/química , Etanol , Emulsões/química
4.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5540-5547, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114146

RESUMO

The effective components of flavonoids in the "Pueraria lobata-Hovenia dulcis" drug pair have low bioavailability in vivo due to their unstable characteristics. This study used microemulsions with amphoteric carrier properties to solve this problem. The study drew pseudo-ternary phase diagrams through titration compatibility experiments of the oil phase with emulsifiers and co-emulsifiers and screened the prescription composition of blank microemulsions. The study used average particle size and PDI as evaluation indicators, and the central composite design-response surface method(CCD-RSM) was used to optimize the prescription; high-dosage drug-loaded microemulsions were obtained, and their physicochemical properties, appearance, and stability were evaluated. The results showed that when ethyl butyrate was used as the oil phase, polysorbate 80(tween 80) as the surfactant, and anhydrous ethanol as the cosurfactant, the maximum microemulsion area was obtained. When the difference in results was small, K_(m )of 1∶4 was chosen to ensure the safety of the prescription. The prescription composition optimized by the CCD-RSM was ethyl butyrate(16.28%), tween 80(9.59%), and anhydrous ethanol(38.34%). When the dosage reached 3% of the system mass, the total flavonoid microemulsion prepared had a clear and transparent appearance, with average particle size, PDI, and potential of(74.25±1.58)nm, 0.277±0.043, and(-0.08±0.07) mV, respectively. The microemulsion was spherical and evenly distributed under transmission electron microscopy. The centrifugal stability and temperature stability were good, and there was no layering or demulsification phenomenon, which significantly improved the in vitro dissolution of total flavonoids.


Assuntos
Polissorbatos , Pueraria , Polissorbatos/química , Flavonoides , Tensoativos/química , Etanol , Emulsões , Tamanho da Partícula , Solubilidade
5.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6075-6081, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114214

RESUMO

With the continuous exploration of microemulsions as solvents for traditional Chinese medicine extraction, polyoxyethy-lene(35) castor oil(CrEL), a commonly used surfactant, is being utilized by researchers. However, the problem of detecting residues of this surfactant in microemulsion extracts has greatly hampered the further development of microemulsion solvents. Based on the chemical structures of the components in CrEL and the content determination method of castor oil in the 2020 edition of the Chinese Pharmacopoeia(Vol. Ⅳ), this study employed gas chromatography(GC) and single-factor experiments to optimize the preparation method of methyl ricinoleate from CrEL. The conversion coefficient between the two was validated, and the optimal sample preparation method was used to process microemulsion extracts of Zexie Decoction from three batches. The content of methyl ricinoleate generated was determined, and the content of CrEL in the microemulsion extracts of Zexie Decoction was calculated using the above conversion coefficient. The results showed that the optimal preparation method for CrEL was determined. Specifically, 10 mL of 1 mol·L~(-1) KOH-methanol solution was heated at 60 ℃ for 15 min in a water bath. Subsequently, 10 mL of boron trifluoride etherate-methanol(1∶3) solution was heated at 60 ℃ for 15 min in a water bath, followed by extraction with n-hexane twice. CrEL could stably produce 20.84% methyl ricinoleate. According to this conversion coefficient, the average mass concentration of CrEL in the three batches of Zexie Decoction microemulsion extracts was 11.94 mg·mL~(-1), which was not significantly different from the CrEL mass concentration of 11.57 mg·mL~(-1) during microemulsion formulation, indicating that the established content determination method of this study was highly accurate, sensitive, and repeatable. It can be used for subsequent research on microemulsion extracts of Zexie Decoction and provide a reference for quality control of other drug formulations containing CrEL.


Assuntos
Óleo de Rícino , Polietilenoglicóis , Polietilenoglicóis/química , Metanol , Tensoativos/química , Solventes , Água/química , Emulsões/química
6.
AAPS PharmSciTech ; 24(8): 243, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030940

RESUMO

Kaempferia galanga volatile oil (KVO), the main effective component of the medicinal plant Kaempferia galanga L., possesses a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-angiogenic activities and has therapeutic potential for gastric ulcer (GU). However, poor solubility as well as instability limits the clinical application of KVO. In this study, K. galanga volatile oil self-microemulsion solids (KVO-SSMEDDS) were prepared to improve its bioavailability and stability, and the therapeutic effects were evaluated in a rat model with GU. The ratio of oil phase, emulsifier, and co-emulsifier in the KVO-SMEDDS prescription were optimized by plotting the pseudo-ternary phase diagram with the star point design-response surface method. Based on the optimal prescription, self-microemulsifying drug delivery system (SMEDDS) was prepared as solid particles (S-SMEDDS). The prepared KVO-SSMEDDS had a rounded and non-adhesive appearance, formed an O/W emulsion after dissolution in water, and had a uniform particle size distribution with good stability and solubility. It was administered to GU model animals, and the results showed that a certain dose of KVO-SSMEDDS solution could increase the content of gastric mucosal protective factors PGE2, TGF-α, and EGF in gastric tissues and serum, and the expression of inflammatory factors IL-8 and TNF-α was downregulated. Meanwhile, the expression of the NF-κB/COX-2 pathway proteins was inhibited. In conclusion, the prepared KVO-SSMEDDS has good dispersion, solubility, and stability and has a therapeutic effect on rats with GU.


Assuntos
Alpinia , Óleos Voláteis , Úlcera Gástrica , Ratos , Animais , Tensoativos , Óleos Voláteis/farmacologia , Úlcera Gástrica/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Emulsões , Disponibilidade Biológica , Tamanho da Partícula
7.
Gels ; 9(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888372

RESUMO

The purpose of the current study was to prepare and evaluate a citronella oil-loaded microemulsion-based micro-emulgel for the treatment of Candida albicans. The primary objective was to use the skin to transfer hydrophobic medications into the bloodstream. The formulation included cinnamon oil as an antifungal oil and citronella oil as an active pharmaceutical ingredient, respectively. Tween 80 and PEG 200 were used as the surfactant and co-surfactant, respectively, to create phase diagrams. Carbopol 940, one of the frequently used polymers, was investigated for its ability to prepare gel formulations. The optimized (F3) batch contained the highest percentage (87.05 ± 0.03%) of drug content and, according to the statistics provided, had the highest drug release rate of around 87.05% within 4 h. The Korsmeyer-Peppas model with n value of 0.82, which is in the range 0.5-1, had the highest r2 value, indicating that release following non-Fickian/anomalous diffusion provided a better dimension for all of the formulations. The optimized (F3) formulation had stronger antifungal activity in comparison to other formulations. This leads to the conclusion that citronella oil can be made into a micro-emulgel, which may improve its release in aqueous systems while maintaining a high level of drug release at the target site.

8.
Carbohydr Polym ; 321: 121302, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739506

RESUMO

Non-spore forming probiotic bacteria tend to diminish their activity under adverse conditions. This leads to the difficulty of delivery in animal body system as well as the feed pelleting process. The present work proposes the microcapsule networks based on polymer matrices and charges under ionic crosslink to encapsulate probiotic for an extensive stability in adverse conditions. The combination of agar (AG) and alginate (AL) is a good model to combine agar matrices and alginate charges under ionic crosslink through o/w emulsion system for probiotic incorporation. By simply mixing Lactobacillus plantarum MB001(LPMB001) with AL and AG containing few drops of soybean oil, a stable o/w microemulsion can be obtained. The addition of calcium chloride favors the ionic crosslink among AG matrices resulting in LPMB001/AG-AL microcapsules. In vitro studies indicate the survival of LPMB001 and the slow release even after treatment in adverse conditions. This microencapsulation prolongs LPMB001 viability under the heat treatment and the storage conditions and this designates the potential feed processing. The present work for the first time shows how we can combine polymer matrices and charges to protect probiotic from the adverse conditions which is simple and practical for the process of dietary supplementation.


Assuntos
Bactérias , Probióticos , Animais , Cápsulas , Ágar , Alginatos , Polímeros
9.
Int J Nanomedicine ; 18: 2839-2853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273286

RESUMO

Background: Berberine (BR) shows promise as a candidate for treating irritable bowel syndrome with diarrhea (IBS-D). However, the undesired physicochemical properties and poor oral absorption limit its clinical translation. A ketogenic diet (KD) can induce intestinal overexpression of cannabidiol (CB) receptors, which may offer a potential target for IBS-D-specific delivery of BR. Methods: The microemulsions loaded with BR and decorated with cannabidiol (CBD/BR-MEs) were developed through a one-step emulsion method. The pharmaceutical behaviors of the CBD/BR-MEs were measured using dynamic light scattering and high-performance liquid chromatography. The efficacy of the anti-IBS-D therapy was evaluated by assessing fecal water content, Bristol score, and AWR score. The intestinal permeability were assessed through immunofluorescent staining of CB1 and ZO-1, respectively. The signaling of CREB/BDNF/c-Fos was also studied along with immunofluorescent and immunohistochemical examination of brain sections. Results: The CBD/BR-MEs, which had a particle size of approximately 30 nm and a surface density of 2% (wt%) CBD, achieved greater than 80% (wt%) encapsulation efficiency of BR. The pharmacokinetics performance of CBD/BR-MEs was significantly improved in the KD-fed IBS-D rats than the standard diet-fed ones, which is highly related to intestinal expression of CB1 receptors. The treatment with CBD/BR-MEs and KD exhibited evident comprehensive advantages over the other groups in terms of anti-IBS-D efficacy. CBD/BR-MEs and KD synergistically decreased intestinal permeability. Moreover, the treatment with CBD/BR-MEs and KD not only blocked the CREB/BDNF/c-Fos signaling in the brain but also decreased the levels of neurotrophic factors, neurotransmitters, and inflammatory cytokines in the serum of IBS-D model rats. Conclusion: Such a design represents the first attempt at IBS-D-targeted drug delivery for improved oral absorption and efficacy through KD-induced target exposure, which holds promising potential for the treatment of IBS-D.


Assuntos
Berberina , Canabidiol , Dieta Cetogênica , Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Diarreia/tratamento farmacológico
10.
Zhongguo Zhong Yao Za Zhi ; 48(3): 672-680, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872230

RESUMO

This study screened excellent carriers for co-loading tanshinone Ⅱ_A(TSA) and astragaloside Ⅳ(As) to construct antitumor nano-drug delivery systems for TSA and As. TSA-As microemulsions(TSA-As-MEs) were prepared by water titration. TSA-As metal-organic framework(MOF) nano-delivery system was prepared by loading TSA and As in MOF by the hydrothermal method. Dynamic light scattering(DLS), transmission electron microscopy(TEM), and scanning electron microscopy(SEM) were used to characterize the physicochemical properties of the two preparations. Drug loading was determined by HPLC and the effects of the two preparations on the proliferation of vascular endothelial cells, T lymphocytes, and hepatocellular carcinoma cells were detected by the CCK-8 method. The results showed that the particle size, Zeta potential, and drug loading of TSA-As-MEs were(47.69±0.71) nm,(-14.70±0.49) mV, and(0.22±0.01)%, while those of TSA-As-MOF were(258.3±25.2) nm,(-42.30 ± 1.27) mV, and 15.35%±0.01%. TSA-As-MOF was superior to TSA-As-MEs in drug loading, which could inhibit the proliferation of bEnd.3 cells at a lower concentration and improve the proliferation ability of CTLL-2 cells significantly. Therefore, MOF was preferred as an excellent carrier for TSA and As co-loading.


Assuntos
Abietanos , Células Endoteliais , Camundongos , Animais , Linhagem Celular
11.
Drug Dev Ind Pharm ; 49(2): 207-216, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36971611

RESUMO

OBJECTIVE: To investigate the safety and efficacy of resveratrol microemulsion gel in improving pigmentation. METHODS: Resveratrol microemulsion gel was prepared by the microemulsion solubilization method, and its quality was evaluated. The transdermal and drug retention rates of resveratrol in vivo were assessed using a transdermal test. The inhibitory effects of resveratrol suspension and microemulsion on tyrosinase activity and melanin production of A375 human melanocytes and zebrafish embryos were compared. A skin patch test was used to investigate the safety of the gel on 15 volunteers. RESULTS: The microemulsion gel was homogeneous and stable. Compared with suspension and microemulsion, the drug penetration rate and skin retention in the microemulsion gel group were significantly increased. Compared with the suspension group, the activity of melanocyte tyrosinase in A375 human melanocyte was significantly inhibited in the microemulsion group, and the melanin production rate of A375 human melanocyte and the melanin area of zebrafish yolk was decreased. All 15 volunteers tested negative for the human skin patch. CONCLUSIONS: The microemulsion gel could significantly enhance the ability of resveratrol to inhibit the formation of melanin without causing side effects. These data provide the experimental basis for developing and applying the preparation for improving pigmentation.


Assuntos
Absorção Cutânea , Peixe-Zebra , Animais , Humanos , Resveratrol , Pigmentação da Pele , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Óleo de Rícino/metabolismo , Pele/metabolismo , Polietilenoglicóis/metabolismo , Emulsões/metabolismo
12.
Pharmaceutics ; 15(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839940

RESUMO

A mucoadhesive microemulsion of lipophilic silymarin (SLMMME) was developed to treat Parkinson's disease (PD). Optimization of the SLM microemulsion (ME) was performed using Central Composite Design (CCD). The composition of oil, surfactant, co-surfactant, and water was varied, as per the design, to optimize their ratio and achieve desirable droplet size, zeta potential, and drug loading. The droplet size, zeta potential, and drug loading of optimized SLMME were 61.26 ± 3.65 nm, -24.26 ± 0.2 mV, and 97.28 ± 4.87%, respectively. With the addition of chitosan, the droplet size and zeta potential of the developed ME were both improved considerably. In vitro cell toxicity investigations on a neuroblastoma cell line confirmed that SLMMME was non-toxic and harmless. In comparison to ME and drug solution, mucoadhesive ME had the most flow through sheep nasal mucosa. Further, the in vitro release showed significantly higher drug release, and diffusion of the SLM loaded in MEs than that of the silymarin solution (SLMS). The assessment of behavioral and biochemical parameters, as well as inflammatory markers, showed significant (p < 0.05) amelioration in their level, confirming the significant improvement in neuroprotection in rats treated with SLMMME compared to rats treated with naïve SLM.

13.
Pharm Dev Technol ; 28(2): 153-163, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36662596

RESUMO

Pomegranate seed oil with its high levels of phenolic compounds is known to exhibit neuroprotective effects. Delivering hydrophilic drugs to the brain is challenging since blood-brain barrier allows only a few lipophilic molecules into the brain, thus posing an additional barrier for drug delivery to the brain in conditions like Alzheimer's. The present study focuses on the preparation of the stable galantamine hydrobromide (GHBr) microemulsion (ME) using pomegranate seed oil (PSO) as an adjuvant. The developed ME was characterized for various physicochemical properties, cytotoxicity, and protective role against Amyloid Beta (1-42) oligomer-induced toxicity in IMR 32 cell line. GHBr and PSO ratio was optimized based on an in-vitro diffusion study and compatibility study using DSC and FTIR. The ME was prepared by the water titration method and optimized using the one variable at a time (OVAT) strategy. Globule size and PDI of GHBr PSO ME were found to be 200.36 ± 0.01 nm, and 0.219 ± 0.011 nm respectively. GHBr PSO ME showed significantly better results in terms of cell line toxicity, antioxidant activity and protective effect against Aß induced cell death. The results obtained showed the potential of using PSO as an effective synergistic agent along with the anti-Alzheimer's drug for the treatment of disease.


Assuntos
Antioxidantes , Punica granatum , Galantamina , Peptídeos beta-Amiloides , Emulsões/química , Óleos de Plantas/química
14.
Artigo em Chinês | WPRIM | ID: wpr-988189

RESUMO

ObjectiveTo investigate the effect of microemulsion on the distribution of index components in different phases of Zexietang extract based on high performance liquid chromatography(HPLC) and phase separation process. MethodParticle size meter and transmission electron microscope were used to characterize the colloidal particles in blank microemulsion, aqueous extract of Zexietang and microemulsion extract of Zexietang. The phase separation process was established by high-speed centrifugation and dialysis, and based on this process, the aqueous extract and microemulsion extract of Zexietang were separated into the true solution phase, the colloidal phase and the precipitation phase, respectively. The contents of six components, including atractylenolide Ⅲ, atractylenolide Ⅱ, 23-acetyl alisol C, alisol A, alisol B and alisol B 23-acetate, were determined by HPLC with the mobile phase of water(A)-acetonitrile(B) for gradient elution(0-5 min, 40%-43%B; 5-20 min, 43%-45%B; 20-45 min. 45%-60%B; 45-75 min, 60%-80%B). The solubility of the index components in water and microemulsion was determined by saturation solubility method. ResultThe colloidal particles in the aqueous extract, microemulsion extract and blank microemulsion were all spherical, and the particle size, polydispersity index(PDI) and Zeta potential of the colloidal particles were in the order of aqueous extract >microemulsion extract >blank microemulsion. The results of phase separation showed that the colloidal phase and the true solution phase could be completely separated by dialysis for 2.5 h, and the phase separation process was tested to be stable and feasible. Compared with the aqueous extract of Zexietang, the use of microemulsion as an extraction solvent could increase the contents of atractylenolide Ⅲ, 23-acetyl alisol C, atractylenolide Ⅱ , alisol A, alisol B and alisol B 23-acetate by 3.75, 6.82, 35.47, 10.66, 35.41, 27.75-fold, and could increase the extraction efficiencies of the latter five constituents by 2.03, 1.15, 1.70, 6.43, 5.53 times. The solubility test showed that the microemulsion could significantly improve the solubility of atractylenolide Ⅱ, alisol A, alisol B and alisol B 23-acetate, but it had less effect on the solubility of atractylenolide Ⅲ and 23-acetyl alisol C. ConclusionMicroemulsion can improve the extraction efficiency and increase the distribution of the index components in the colloidal phase state of Zexietang to different degrees, providing a reference for the feasibility of microemulsion as an extraction solvent for traditional Chinese medicine.

15.
Pharm Dev Technol ; 28(1): 51-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36547258

RESUMO

Microemulsions (MEs) were developed for dermal delivery of 1% w/w itraconazole (ITZ). Solubility of ITZ in various oils was investigated and clove oil was selected as oil phase. Pseudoternary phase diagrams were constructed by titration method. The system containing clove oil as oil phase, Tween®80 as surfactant, and 1:1 mixture of water and polyethylene glycol 400 as aqueous phase provided the largest ME region. It was selected for the formulation development of ITZ-loaded MEs. Physicochemical stability was evaluated at 4 °C, room temperature (25 °C), and 45 °C for three months. In vitro permeation and retention studies were assessed using shed snakeskin as a model membrane. Antifungal activity was investigated by agar diffusion method. Results indicated that incorporation of ITZ in the selected MEs did not affect physical properties. Physicochemical data after storage periods revealed that the most suitable storage temperature was 4 °C. Skin permeation and retention data indicated that water-in-oil (w/o) ITZ-loaded MEs had superior dermal delivery of ITZ than oil-in-water (o/w) ITZ-loaded ME and ITZ-oily solution. Moreover, w/o ITZ-loaded MEs showed larger inhibition zones against C. albicans and T. rubrum than a commercial gel. Therefore, w/o ITZ-loaded MEs possibly provided effective dermal delivery and antifungal activity to treat superficial fungal infections.


Assuntos
Antifúngicos , Itraconazol , Itraconazol/farmacologia , Itraconazol/química , Antifúngicos/farmacologia , Antifúngicos/química , Óleo de Cravo/metabolismo , Óleo de Cravo/farmacologia , Pele/metabolismo , Tensoativos/química , Água/química , Emulsões/química
16.
J Sci Food Agric ; 103(8): 4068-4076, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36495023

RESUMO

BACKGROUND: In this study, ultrasonic-assisted reverse micelles were used to extract tea protein from tea residues. First, the extraction conditions of ultrasonic power, ionic strength and pH were optimized by response surface methodology. Then, structural comparison of ultrasonic-assisted reverse micelle extraction of tea protein (UARME) and ultrasonic-assisted alkali extraction (UAAE) were performed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and amino acid composition. RESULTS: The optimum process conditions were determined as follows: ultrasonic power 300 W, KCl 0.15 mol L-1 , pH 8. The extraction rate was 46.29%, which was close to the theoretical value (46.44%). SEM showed that the protein particles extracted by UARME were smaller than those by UAAE. The results of FTIR spectroscopy showed that the protein extracted by UARME had higher α-helix, ß-sheet and ß-turn, and the contents were 20%, 62.3% and 17.1%, respectively. The content of random coil was 0%, which was significantly lower than that of alkali extraction, indicating that the secondary structure of protein extracted by UARME was more orderly. By comparing the amino acid composition of the two methods, the amino acid content of tea protein extracted by UARME was significantly higher than that of UAAE. CONCLUSION: The biological activity of tea protein is closely related to its structure. Compared with alkali extraction, reverse micelles can better protect the secondary structure of proteins, which is of great significance for studying their functional properties. © 2022 Society of Chemical Industry.


Assuntos
Micelas , Chá , Chá/química , Proteínas , Espectroscopia de Infravermelho com Transformada de Fourier , Aminoácidos
17.
Drug Deliv ; 29(1): 3454-3466, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447364

RESUMO

Combinational icaritin (IC) and coix seed oil (CSO) holds promising potential in the treatment of hepatocellular carcinoma. However, traditional cocktail therapy is facing difficulties to optimize the synergistic antitumor efficacy due to the asynchronous pharmacokinetics. Therefore, we developed an icaritin-loaded microemulsion based on coix seed oil (IC-MEs) for improved pharmacokinetics and enhanced antitumor efficacy. The preparation technology of IC-MEs was optimized by the Box-Behnken design and the pharmaceutical properties were characterized in detail. IC-MEs show synergistic antiproliferation against HepG2 cells compared with monotherapy. The mechanism is associated with stronger apoptosis induction via enhancing caspases-3 activity. IC-MEs significantly improve the bioavailability of IC due to the encapsulation of coix oil-based microemulsion and also obtain the desired liver accumulation and elimination. More importantly, IC-MEs exhibit the overwhelming antitumor ability among all of the treatments on the HepG2 xenograft-bearing mice. This study verifies the feasibility of using coix oil-based microemulsion to improve the antitumor effect of water-insoluble components.


Assuntos
Coix , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Flavonoides/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Óleos de Plantas/farmacologia
18.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428991

RESUMO

Honokiol, the main bioactive extract of Magnolia officinalis, exhibits extensive therapeutic actions. Its treatment for advanced non-small cell lung cancer is undergoing clinical trials in China. However, the published safety evaluation studies have focused on extract mixtures of Magnolia officinalis in which the honokiol content was well below the reported clinical dose of the honokiol monomer. Therefore, safety assessment of the honokiol monomer is urgently needed. Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 µg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress. By exploring the relationship between time and toxicity, we found that developmental toxic responses were stage-dependent. They mainly occurred within the first 24 h post fertilization (hpf) especially the first 12 hpf. In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 µg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2. In contrast, high dose (0.6 µg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim. By acridine orange staining, we found that a high dose of honokiol microemulsion induced apoptosis mainly in zebrafish brain. In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual effects of honokiol microemulsion on nerve cells. These dual roles of the honokiol microemulsion in oxidation-reduction reactions and apoptosis may be regulated by the forkhead box class O (FoxO) signaling pathway. Due to the potential of developmental toxicity, we recommend that the administration of high dose honokiol microemulsion in pregnant women should be considered with caution.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Ratos , Animais , Humanos , Gravidez , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Apoptose , Transdução de Sinais , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo
19.
Turk J Pharm Sci ; 19(5): 560-571, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36317931

RESUMO

Objectives: This investigation was aimed at designing an effective mucoadhesive microemulsion system to accomplish higher brain uptake of curcumin through intranasal route. Materials and Methods: Mucoadhesive microemulsion of curcumin (MMEC) was developed using screened oil, surfactant, and co-surfactant by Box-Behnken design and was evaluated for mucoadhesion, stability, and naso-ciliotoxicity study. Comparative brain uptake of curcumin after nasal administration of MMEC and polycarbophil curcumin gel and intravenous administration of plain curcumin solution was studied by performing bio-distribution study in Swiss albino rats. Results: The results showed that all formulation variables i.e., the amount of capmul MCM (X1), Smix (accenon CC: transcutol P) (X2) and percentage of aqueous. Polycarbophil (X3) had a significant effect (p<0.05) on the responses. The developed MMEC was stable and non-ciliotoxic with 66.74 ± 3.46 nm and 98.58% ± 1.21 as average globule size and drug content, respectively. Polydispersibility index (0.133 ± 0.17) data and transmission electron microscopy study depicted the narrow size distribution of MMEC. Furthermore, following a comparative investigation of the brain uptake of curcumin among MMEC, plain drug gel and intravenous administration at 2.86 mg/kg, more brain uptake of curcumin was demonstrated for MMEC over intravenous application. Moreover, curcumin uptake in olfactory bulb after nasal administration of MMEC (31.11 ± 1.6) was than 9.44 times higher than intravenous injection of curcumin solution (3.25 ± 1.01). Area under curve represents the ratio of 2.86 mg/kg in brain tissue to plasma acquired afterward(s) the intranasal injection of MMEC (and it) was essentially greater than after the intravenous administration of curcumin solution. Conclusion: Findings of the investigation revealed that optimal MMEC and intranasal route may be considered to be promising and an alternative approach for brain targeting of curcumin.

20.
Am J Chin Med ; 50(7): 1845-1868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185015

RESUMO

Tanshinone IIA (TanIIA) has neuroprotective effects against cerebral ischemia reperfusion injury (CIRI), but its clinical application is limited due to poor water solubility and robust first pass elimination property. In this study, we developed microemulsion loaded with TanIIA (TanIIA ME) to break through these limitations, and explored the neuroprotective effect of TanIIA ME against CIRI and the epigenetic regulation mechanism of this neuroprotection. In vivo, middle cerebral artery occlusion (MCAO) models were treated with TanIIA ME and TanIIA solution or sodium valproate as a control. The effect of TanIIA ME on HDAC activity was determined by ELISA assay. In addition, we used primary hippocampal neurons to establish oxygen-glucose deprivation and reoxygenation (OGD/R) models. Lactate dehydrogenase (LDH) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to investigate the neuroprotective efficacy of TanIIA ME. Subsequently, the expression of H3K18ac, H4K8ac, NMDAR1, caspase-3, and MAP-2 were investigated in MCAO or OGD/R models treated with TanIIA ME, TanIIA solution or sodium valproate. In vivo experimental results indicated that TanIIA ME significantly reduced neurological scores, infarction volume, and HDAC activity compared with TanIIA solution and MCAO group, accompanied by upregulation of H3K18ac, H4K8ac, and MAP-2 expression and downregulation of NMDAR1 and caspase-3 expression. Additionally, in OGD/R models, the results demonstrated that TanIIA ME treatment had a better neuroprotective effect along with increased H3K18ac, H4K8ac, and MAP-2 expression and decreased NMDAR1 and caspase-3 expression, compared with the other treatments except sodium valproate. Overall, TanIIA ME treatment exhibited superior efficacy in protecting against CIRI through mechanisms that might involve the inhibition of NMDAR1 and caspase-3 expression and the enhancement of MAP-2 expression by regulating histone H3K18 and H4K8 acetylation. Thus, TanIIA ME could be potentially used to develop a promising drug for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Epigênese Genética , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Glucose , Isquemia Encefálica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA