RESUMO
BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , alfa-Sinucleína/metabolismo , Caenorhabditis elegans , Doenças Neurodegenerativas/tratamento farmacológico , Animais Geneticamente Modificados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Autofagia , Doença de Alzheimer/tratamento farmacológicoRESUMO
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aß), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Assuntos
Precursor de Proteína beta-Amiloide/química , Catequina/análogos & derivados , Doenças Neurodegenerativas/metabolismo , Chá/química , alfa-Sinucleína/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Catequina/farmacologia , Catequina/uso terapêutico , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , alfa-Sinucleína/efeitos dos fármacosRESUMO
SCOPE: Copper supplementation in nutrition has evolved from using inorganic mineral salts to organically chelated minerals but with limited knowledge of the impact at the cellular level. METHODS: Here, the impact of inorganic and organic nutrient forms (glycinate, organic acid, and proteinate) of copper on the cellular level is investigated on intestinal cell lines, HT29 and Caco-2, after a 2-hr acute exposure to copper compounds and following a 10-hr recovery. RESULTS: Following the 10-hr recovery, increases were observed in proteins involved in metal binding (metallothioneins) and antioxidant response (sulfiredoxin 1 and heme oxygenase 1), and global proteomic analysis suggested recruitment of the unfolded protein response and proteosomal overloading. Copper organic acid chelate, the only treatment to show striking and sustained reactive oxygen species generation, had the greatest impact on ubiquitinated proteins, reduced autophagy, and increased aggresome formation, reducing growth in both cell lines. The least effect was noted in copper proteinate with negligible impact on aggresome formation or extended growth for either cell line. CONCLUSION: The type and source of copper can impact significantly at the cellular level.
RESUMO
Curcumin, a polyphenolic antioxidant derived from the turmeric root has undergone extensive preclinical development, showing remarkable efficacy in wound repair, cancer and inflammatory disorders. This review addresses the rationale for its use in neurodegenerative disease, particularly Alzheimer's disease. Curcumin is a pleiotropic molecule, which not only directly binds to and limits aggregation of the ß-sheet conformations of amyloid characteristic of many neurodegenerative diseases but also restores homeostasis of the inflammatory system, boosts the heat shock system to enhance clearance of toxic aggregates, scavenges free radicals, chelates iron and induces anti-oxidant response elements. Although curcumin corrects dysregulation of multiple pathways, it may exert many effects via a few molecular targets. Pharmaceutical development of natural compounds like curcumin and synthetic derivatives have strong scientific rationale, but will require overcoming various hurdles including; high cost of trials, concern about profitability and misconceptions about drug specificity, stability, and bioavailability.
Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Curcumina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Retina/efeitos dos fármacos , Retina/metabolismo , Proteínas tau/metabolismoRESUMO
BACKGROUND: Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. SCOPE: This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. CONCLUSIONS: Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium.