RESUMO
BACKGROUND: Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS: The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS: HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS: These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.
Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Motilidade Gastrointestinal , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Ratos , Encéfalo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Neurotransmissores/metabolismoRESUMO
ObjectiveTo explore the therapeutic effect and mechanism of Guipitang on rats with myocardial ischemia. MethodFifty SD rats were divided into five groups: a control group, a model group, low and high-dose Guipitang (7.52, 15.04 g·kg-1) groups, and a trimetazidine group (0.002 g·kg-1). By intragastric administration of vitamin D3 and feeding rats with high-fat forage and injecting isoproterenol, the rat model of myocardial ischemia was established. After drug treatment of 15 d, an electrocardiogram (ECG) was performed to analyze the degree of myocardial injury. A fully automatic biochemical analyzer was used to detect the changes in the serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). Hematoxylin-eosin (HE) staining and Masson staining were used to observe myocardial histopathological changes. TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect cardiomyocyte apoptosis. Western blot was adopted to detect the protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK (p-p38 MAPK), B-cell lymphoma-2 (Bcl-2)-associated X (Bax), Bcl-2, and cleaved cysteine aspartate proteolytic enzyme (cleaved Caspase-3). ResultCompared with the control group, the ECG S-T segment decreased in the model group. The serum levels of TC, TG, and LDL-C were increased significantly (P<0.05). The arrangement of myocardial tissue was disordered, and the proportion of cardiomyocyte apoptosis increased. The protein levels of cleaved Caspase-3, Bax, and p-p38 MAPK in the heart were increased, and the Bcl-2 expression was decreased (P<0.05). Compared with the model group, the S-T segment downward shift was restored in the low and high-dose Guipitang groups and trimetazidine group, and the levels of TC, TG, and LDL-C were decreased. The protein expression of cleaved Caspase-3 and Bax in the heart dropped, and p-p38 MAPK and p-ERK1/2 protein expressions increased significantly (P<0.05). The degree of myocardial injury was alleviated, and the proportion of cardiomyocyte apoptosis decreased. Bcl-2 protein expression was increased significantly in the low-dose Guipitang group (P<0.05). ERK1/2 and p38 MAPK proteins had no significant difference among different groups. ConclusionGuipitang could alleviate myocardial injury and inhibit cardiomyocyte apoptosis in rats by activating the expression of ERK1/2 and p38 MAPK.
RESUMO
BACKGROUND:Bushen Yiqi Huayu granule has the effect of replenishing qi and eliminating blood stasis,tonifying kidney and smoothing collages,and is often used in the treatment of osteoporosis.At present,there are few studies on the effect of Bushen Yiqi Huayu granule on the callus angiogenesis of osteoporotic fractures. OBJECTIVE:To explore the mechanism of Bushen Yiqi Huayu granule by up-regulating extracellular signal-regulated kinase/mitogen-activated protein kinases(ERK/MAPK)signaling pathway to improve callus angiogenesis after fracturing in osteoporotic rats. METHODS:(1)Bone marrow mesenchymal stem cells from osteoporotic SD rats and bone marrow monocytes from C57BL/6 mice were collected.MTT assay was used to detect different doses of Bushen Yiqi Huayu granule on bone mesenchymal stem cell toxicity.Bone mesenchymal stem cells and bone marrow monocytes were cultured in the medium supplemented with 0 and 1.5 mg/mL Bushen Yiqi Huayu granules,respectively,and osteogenic differentiation and osteoclast differentiation were carried out in vitro.(2)144 SD rats were randomly divided into sham operation group,model group,granule group and granule+PD98059 group with 36 rats in each group.The osteoporotic model was established in the model group,granule group and granule+PD98059 group,and only part of the adipose tissue near the ovary was removed in the sham operation group.8 weeks later,all rats received left tibial osteotomy.In the granule+PD98059 group,5 g/kg Bushen Yiqi Huayu granule was given intragastrically,and 0.3 mg/kg PD98059 was injected into the tail vein.The granule group was given 5 g/kg Bushen Yiqi Huayu granule,and the same volume of normal saline was injected into the tail vein.The sham operation group and model group were given an equal volume of normal saline,and the caudal vein was injected with an equal volume of normal saline.Drug administration was conducted once a day for 8 weeks.Fracture healing and callus angiogenesis were observed by X-ray,micro-computed tomography and microvascular perfusion angiography.Bone mineral density and mechanical strength of the callus were measured.The tibia was observed by hematoxylin-eosin staining and Masson staining.Western blot assay and immunohistochemistry were used to examine the expression of ERK/MAPK signaling pathway-related molecules. RESULTS AND CONCLUSION:(1)Compared with the 0 mg/mL group,the alkaline phosphatase activity,mineralization level,p-ERK1/2 and p-p38 MAPK expression levels of osteocytes increased(P<0.05),while the density and volume of osteoclasts decreased in the 1.5 mg/mL group(P<0.05).(2)Compared with the sham operation group,the fracture healing degree of the granule group was similar at 4 and 8 weeks,but there was no significant difference in Lane-Sandhu score,total callus volume,mineralized callus volume,mineralized callus volume/total callus volume,trabecular thickness,vascular number,spacing,thickness,vascular volume/total volume,bone mineral density,ultimate load of callus,stiffness,p-ERK1/2,p-p38 MAPK,p-IκB-α,and p-p65 expression levels(P>0.05).In the model group and granule+PD98059 group,fracture healing was slow,Lane-Sandhu score,total callus volume,mineralized callus volume,mineralized callus volume/total callus volume,trabecular thickness,vascular number,thickness,vascular volume/total volume,bone mineral density,ultimate load of callus,stiffness,p-ERK1/2,p-p38 MAPK,p-IκB-α,and p-p65 expression levels decreased(P<0.05),and vascular spacing increased(P<0.05),compared with the sham operation group.(3)It is indicated that Bushen Yiqi Huayu granule can improve fracture healing,promote callus angiogenesis and alleviate the symptoms of osteoporosis by enhancing the expression of the ERK/MAPK signaling pathway-related molecules in osteoporotic rats.
RESUMO
Objective:To evaluate the effect of electroacupuncture on P2X4R-p38 mitogen-activated protein kinase (p38 MAPK)-brain-derived neurotrophic factor (BDNF) signaling pathway in trigeminal ganglion of rats with trigeminal neuralgia.Methods:Thirty-six clean-grade healthy adult male Sprague-Dawley rats, weighing 190-230 g, aged 2-3 months, were divided into 3 groups ( n=12 each) using a random number table method: sham operation group (S group), trigeminal neuralgia group (TN group), and electroacupuncture group (E group). The model was developed by chronic constriction of the infraorbital nerve in anesthetized animals. The infraorbital nerve was only exposed without ligation in group S. Rats received electroacupuncture stimulation at the Baihui and Xiaguan acupoints on the affected side for 20 min after developing the model, with a frequency of 80 Hz, twice a day, for 14 consecutive days in E group. Facial mechanical pain threshold (FMT) was measured at 1 day before developing the model and 3, 7, 14, 21 and 28 days after developing the model. The rats were sacrificed after the last behavioral testing, and the trigeminal ganglia were taken for examination of histopathological changes of trigeminal ganglion (by HE staining) and for determination of the expression of P2X4R, p38 MAPK, phosphorylated p38 MAPK (p-p38 MAPK) and BDNF (by Western blot) and contents of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6 (by enzyme-linked immunosorbent assay). Results:Compared with group S, the FMT was significantly decreased at each time point after developing the model, the expression of P2X4R, p-p38 MAPK and BDNF in trigeminal ganglion was up-regulated, and the contents of TNF-α, IL-1β and IL-6 were increased ( P<0.05), the pathological changes of the trigeminal ganglion were obvious in group TN. Compared with group TN, the FMT was significantly increased at each time point after developing the model, and the expression of P2X4R, p-p38 MAPK and BDNF in trigeminal ganglion was down-regulated, and the contents of TNF-α, IL-1β and IL-6 were decreased ( P<0.05), and the pathological changes of the trigeminal ganglion were significantly attenuated in group E. Conclusions:The mechanism by which electroacupuncture alleviates trigeminal neuralgia may be related to inhibiting the activity of P2X4R-p38MAPK-BDNF signaling pathway and reducing neuroinflammation in rats.
RESUMO
OBJECTIVE: To observe the effect of electroacupuncture (EA) stimulating Zusanli (ST36), Sanyinjiao (SP6) on inhibition of osteoclastogenesis and the role of the adenosine A2A receptor (A2AR) and the p38α Mitogen-Activated Protein Kinase (MAPK) signaling pathway in mediating this effect. METHODS: Mice with collagen induced arthritis (CIA) received different treatments. Immunohistochemistry and western blotting were used to determine the levels of multiple signaling molecules in these joints [receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL), receptor activator of NF-κB (RANK), tumor necrosis factor receptor associated factor 6 (TRAF6), p38α, NF-κB, and nuclear factor of activated T cells C1 (NFATc1)]. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: The immunohistochemistry results indicated upregulation of p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced levels in the CIA-EA group. Western blotting indicated upregulation of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced expression in the CIA-EA group. Osteoclasts were more abundant in the CIA-control and CIA-EA-SCH58261 groups than in the CIA-EA group. CONCLUSIONS: EA treatment enhanced the A2AR activity and inhibited osteoclast formation by inhibition of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1. SCH58261 reversed the effect of EA. These results suggest that EA regulated p38α-MAPK signaling by increasing A2AR activity, which inhibited osteoclastogenesis.
Assuntos
Artrite Experimental , Eletroacupuntura , Proteína Quinase 14 Ativada por Mitógeno , Animais , Camundongos , Osteogênese , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Diferenciação Celular , Transdução de Sinais , Ligante RANK/genética , Ligante RANK/metabolismoRESUMO
Purpose: Local acupuncture has been found to have a good analgesic effect in rats with cervical spondylosis radiculopathy (CSR), but it lacks a regulatory effect on traditional Chinese medicine syndrome types of CSR. We proposed "Invigorating Qi and activating Blood" (IQAB) acupuncture, compared with Fenbid, and local electroacupuncture (LEA), to observe whether it has advantages in the protection of the CSR rat model and to elucidate its mechanism through the MAPK (mitogen-activated protein kinase) signaling pathway. Materials and Methods: Male Sprague-Dawley rats were randomly divided into six groups: control, sham, model, Fenbid, LEA, and IQAB. The CSR model was induced by inserting nylon sutures to compress the C4-T1 nerve root. The Fenbid group was treated with ibuprofen sustained-release capsules (15 mg/kg·d, ig). The LEA group received electroacupuncture at both C5 and C7 EX-B2 once a day. The IQAB group received acupuncture at both ST36 and BL17 based on the LEA group's intervention. Mechanical allodynia and gait, morphological changes in the spinal cord, IL-6 and TNF-α levels, MAPKs phosphorylation ratio, monocyte chemoattractant protein-1 (MCP-1) levels in the spinal cord, and the expression of p-p38 in the spinal cord and its colocalization with neurons and glial cell activation markers were detected. Results: Mechanical allodynia, gait disorder, edema, reduced Nissl-positive cell numbers, and increased IL-6 and TNF-α levels in the spinal cord were observed in CSR rats. IQAB significantly alleviated these changes, and the effects were generally comparable to those of Fenbid. Meanwhile, the phosphorylation ratios of p38 and extracellular regulated protein kinase (ERK), co-expression of p-p38 with neuron/microglia, and MCP-1 levels in the spinal cord were markedly down-regulated by IQAB compared with those in CSR model rats. Conclusion: IQAB reduced p38-activation-related microglia activation and MCP-1 levels, thus alleviating pathological changes, inflammation levels in the local spinal cord, and pain behavior of CSR.
RESUMO
Mikania cordata (Burm. f.) B.L. Rob. has been traditionally used in tropical countries throughout Asia and Africa to treat gastric ulcers, dyspepsia, and dysentery. However, the mechanisms responsible for its anti-inflammatory and antioxidant activities are not fully understood. Therefore, this study sought to investigate the anti-inflammatory and antioxidant effects of methanol extracts of M. cordata (MMC) on inflammation and oxidative stress in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages and elucidate its underlying regulatory mechanism. MMC significantly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW 264.7 macrophages by downregulating the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the mRNA and protein levels. Moreover, MMC effectively reduced the mRNA expression levels and production of pro-inflammatory cytokines, including interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α). These suppressive effects of MMC on pro-inflammatory mediators and cytokines were mediated through the inhibition of transforming growth factor beta-activated kinase 1 (TAK1), which subsequently blocked the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). MMC also upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2) by inducing the degradation of Kelch-like ECH-related protein 1 (Keap1), an Nrf2-specific E3 ligase. Accordingly, MMC enhanced Nrf2 target gene expression of anti-oxidative regulators such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). However, it had minimal effect on the DPPH radical scavenging capacity in vitro. Collectively, these findings demonstrate that MMC holds promise as a potential therapeutic agent for alleviating inflammation-related diseases and oxidative stress.
Assuntos
Mikania , NF-kappa B , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Metanol , Mikania/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismoRESUMO
OBJECTIVE: To explore the protective mechanism of spinosin (SPI) on Alzheimer's disease (AD) model cells, Neuro-2a/APP695 (N2a/APP695), against HO-induced oxidative stress damage, to reflect the influence of oxidative stress on the development of AD, and to provide a valuable basis for the research and development of therapeutic drug for AD. METHODS: N2a/APP695 cells were exposed to HO and then treated with spinosin. Firstly, the secretion level of amyloid ß (Aß) and the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were detected by enzyme linked immunosorbent assay kits. Secondly, the oligomerization degree of Aß was performed by Thioflavin T staining. Thirdly, the expression levels of p-Tau (Ser199/202/396), synaptophysin (SYP), postsynaptic density protein 95 (PSD95), and mitogen-activated protein kinase (MAPK) family-related proteins were detected by Western blot analysis. In addition, FITC-labeled phalloidin was used in cytoskeleton staining to reflect synaptic function. RESULTS: This study showed that HO stimulated N2a/APP695 cells to produce excessive MDA and LDH and secrete a large amount of Aß, promoted the aggregation of Aß, induced Tau protein hyperphosphorylation, and led to synaptic dysfunction. Spinosin reversed these changes caused by HO by inactivating p38, which was verified by treatment with the p38 inhibitor BIRB796. CONCLUSION: Spinosin protects N2a/APP695 cells from oxidative stress damage caused by HO through inactivating p38.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/genética , Flavonoides , Estresse Oxidativo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , L-Lactato Desidrogenase , Proteínas Quinases Ativadas por MitógenoRESUMO
Objective: Natural products in diet have shown a potential role in the prevention and treatment of cancer. Ginger (Zingiber officinale Roscoe) is a great candidate because of its properties of anti-inflammatory, antioxidant, and anti-cancer, but little is known about its effect on head and neck cancer. 6-Shogaol is an active compound derived from Ginger. Thus, this study aimed to investigate the possible anticancer effects of 6-shogaol, a major ginger derivate, on head and neck squamous cell carcinomas (HNSCCs) and the underlying mechanisms. Material and Methods: Two HNSCC cell lines, SCC4 and SCC25, were used in this study. Both SCC4 and SCC25 cells were kept as control or treated with 6-shogaol for 8 and 24 hours and then the cell apoptosis and cell cycle progression of treated cells were examined by PI and Annexin V-FITC double stain and flow cytometry analysis. The Cleaved caspase 3, phosphorylations of ERK1/2 and p38 kinases were examined by Western blot analysis. Results: The results showed that 6-shogaol significantly initiated the G2/M phase arrest of the cell cycle and apoptosis to inhibit the survival of both cell lines. Moreover, these responses could be regulated by ERK1/2 and p38 signaling. And, finally, we also demonstrated that 6-shogaol could enhance the cytotoxicity of cisplatin in HNSCC cells. Conclusion: Our data provided new insights to understand the potential pharmaceutical efficacy of a ginger derivate, 6-shogaol, in antagonizing HNSCC survival. The present study suggests that 6-shogaol is a potential novel candidate for anti-HNSCCs therapy.
Assuntos
Catecóis , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Catecóis/farmacologia , Catecóis/uso terapêutico , Apoptose , Neoplasias de Cabeça e Pescoço/tratamento farmacológicoRESUMO
Chronic inflammation plays an important role in hypertensive heart failure. Suppressing angiotensin II (Ang II)-induced cardiac inflammation may contribute to the treatment of hypertension-associated heart failure. Sclareol, a natural product initially isolated from the leaves and flowers of Salvia sclarea, possesses antiinflammatory and immune-regulation activity in various systems. However, its effect on Ang II-induced cardiac remodeling remains unknown. In this study, we have explored the potential effects of sclareol on Ang II-induced heart failure. In vivo experiments were conducted in mice with Ang II-pump infusion for 28 days. Sclareol administration at 5 mg·kg-1 ·d-1 significantly reduced the expression of myocardial injury markers. Sclareol also exerts protective effects against Ang II-induced cardiac dysfunction in mice which is associated with alleviated cardiac inflammation and fibrosis. Transcriptome analysis revealed that inhibition of the Ang II-activated mitogen-activated protein kinase (MAPK) pathway contributed to the protective effect of sclareol. Sclareol inhibits Ang II-activated MAPKs pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Blockage of MAPKs in cardiomyocytes abolished the antiinflammatory effects of sclareol. In conclusion, we show that sclareol protects hearts against Ang II-induced injuries through inhibiting MAPK-mediated inflammation, indicating the potential use of sclareol in the prevention of hypertensive heart failure.
Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Angiotensina II/efeitos adversos , Remodelação Ventricular/fisiologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/patologia , Miocárdio/patologia , Camundongos Endogâmicos C57BLRESUMO
Osteoporosis (OP) is a systemic bone metabolic disease when bone resorption becomes greater than bone formation, resulting in bone mass loss and poor bone structure. The disability or fatality caused by its complications has become a global public problem. As mitogen-activated protein kinases (MAPK) are important molecules that maintain and regulate cellular energy balance, they are closely related to bone metabolism. In clinical practice, traditional Chinese medicine has demonstrated obvious advantages in prevention and treatment of OP. However, there has not been enough comprehensive or systematic summary of the researches into the regulatory mechanisms of this signaling pathway in the treatment of OP by traditional Chinese medicine. Therefore, this paper expounds on the effects of single traditional Chinese herb and compound traditional Chinese herbs on the regulatory mechanisms of MAPK signaling pathway in bone metabolism so that a theoretical basis can be provided for future basic and clinical researches in the prevention and treatment of OP.
RESUMO
Autophagy is an important physiological process that can degrade cell components and maintain cell homeostasis, divided into three types including macroautophagy, microautophagy and chaperon-mediated autophagy generally, and macroautophagy is the most common form. Autophagy can affect the progression of a variety of diseases, such as cancer, neurodegenerative diseases, heart-related diseases, and autoimmune diseases, etc. However, autophagy can promote or inhibit diseases in different circumstances because of the dual roles of autophagy. Therefore, targeted regulating autophagy may be a potential treatment plan for diseases in specific stages of disease development. Now, with the development of traditional Chinese medicine (TCM) resources and the deepening of researches on the modern utilization of TCM, many active compounds from TCM have been discovered that can target autophagy to exert pharmacological activity. Most of the natural compounds activate or inhibit autophagy by affecting the classical PI3K/AKT/mTOR autophagy pathway. In addition, some compounds can also affect autophagy through MAPKs signaling pathways such as MEK/ERK, JNK and p38MAPK. These active compounds exert various biological activities by regulating autophagy, including anti-tumor, inhibiting neurodegenerative diseases, protecting cardiomyocytes, and relief of inflammatory response. In this review, we summarized the active compounds in TCM that affect autophagy by targeting different signaling pathways and their mechanisms of regulating autophagy, also introduced the effects of active compounds on diseases after affecting autophagy. Finally, this paper summarized and prospected the development of targeted autophagy for the treatment of diseases by TCM compounds, hoping to provide clues for subsequent exploration and research.
RESUMO
BACKGROUND: Curcuma longa has been used as spices, food preservative, coloring material, and traditional medicine. This plant also has long been used for a variety of diseases including dyslipidemia, stomach disorders, arthritis, and hepatic diseases. The aim of the present investigation was to examine the anti-neuroinflammatory effects of the 50% ethanolic extract of C. longa in lipopolysaccharide (LPS)-induced BV2 microglial cells. METHODS: Griess reaction was employed to measure the production of nitric oxide (NO), and the levels of prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin 1-beta (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were determined by using profit ELISA kits. Western blotting was used to determine the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), mitogen activated protein kinases (MAPKs), heme oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2). RESULTS: Pre-treatment with CLE inhibited the overproduction and overexpression of pro-inflammatory mediators including NO, PGE2, iNOS, COX-2, and pro-inflammatory cytokines such as IL-1ß, IL-6 and TNF-α in LPS-induced BV2 cells. In addition, CLE suppressed the activation of the NF-κB and three MAPK signaling pathways. Treatment with CLE induced HO-1 protein expression by activating Nrf2 pathway, and inhibiting the HO-1 expression reversed the anti-inflammatory effect of CLE. CONCLUSION: CLE showed anti-neuroinflammatory effects against LPS-induced microglial cells activation through the inhibition of production and expression of pro-inflammatory mediators by negative regulation of the NF-κB and MAPK signaling pathways. These anti-neuroinflammatory effects of CLE were mediated by HO-1/Nrf2 signaling pathway. Taken together, the present study suggests a potent effect of CLE to prevent neuroinflammatory diseases. It is necessary to perform additional efficacy evaluation through in vivo experiments.
Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/farmacologia , Curcuma , Fator 2 Relacionado a NF-E2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular , Transdução de Sinais , Citocinas/metabolismo , Mediadores da Inflamação , República da CoreiaRESUMO
OBJECTIVE: To investigate the effect of Huangqi decoction on renal interstitial fibrosis and its association with the transforming growth factor-ß1 (TGF-ß1) / mitogen-activated protein kinase (MAPK) signaling pathway. METHODS: 120 C57/BL mice were randomly divided into six groups: sham group, Enalapril (20 mg/kg) group, 5/6 nephrectomy model group, and 5/6 nephrectomy model plus Huangqicoction (0.12, 0.36 and 1.08 g/kg respectively) groups. Detecting 24hours urinary protein, blood pressure, serum creatinine, urea nitrogen content changes. Periodic Acid-Schiff stain (PAS) and Masson's trichrome staining was used to observe the renal tissue pathological changes. Protein expression of TGF-ß1, Phosphorylated P38 mitogen activated protein kinases (P-P38), Phosphorylated c-jun N-terminal kinase (P-JNK), Phosphorylated extracellular regulated proteinhnase (P-ERK), Fibroblast-specific protein-1 (FSP-1), Alpha smooth muscle actin (α-SMA), Type III collagen (Collagen III), Connective tissue growth factor (CTGF), Bcl-2 Assaciated X protein (Bax) and B cell lymphoma 2 (Bcl-2) were measured with western blot and immunohistochemical. RESULTS: Both Huangqi decoction and Enalapril improved the kidney function, 24 h urinary protein and the fibrosis in 5/6 nephrectomy mice, Huangqi decoction downregulated the expressions of TGF-ß1, FSP-1, α-SMA, Collagen III and CTGF in a dose-dependent manner, and it has a significant difference ( 0.01) compared with model group.Huangqi decoction downregulated the expressions of P-P38, P-JNK, P-ERK and Bcl-2 in a dose-dependent manner, while upregulated the expression of Bax. CONCLUSIONS: The protective effect of Huangqi decoction for renal interstitial fibrosis in 5/6 nep-hrectomized mice the inhibition of Epithelial-Mesenchymal Transitions and downregulating the TGF-ß1/ MAPK signaling pathway.
Assuntos
Nefropatias , Obstrução Ureteral , Animais , Medicamentos de Ervas Chinesas , Enalapril/metabolismo , Enalapril/farmacologia , Fibrose , Rim , Nefropatias/tratamento farmacológico , Nefropatias/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nefrectomia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Proteína X Associada a bcl-2/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.
Assuntos
Aterosclerose , Placa Aterosclerótica , Tribulus , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Preparações Farmacêuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RatosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Phikud Navakot (PN), a mixture of nine herbal plants, is an ancient Thai traditional medicine used for relieving circulatory disorders and dizziness. PN has also shown anti-inflammatory effects in rats with acute myocardial infarction. Moreover, phytochemical-inhibiting neuroinflammation, including gallic acid, vanillic acid, ferulic acid, and rutin were detected in PN extract; however, the anti-neuroinflammatory activity of PN extract and its components in a coculture system of microglia and neuronal cells is limited. OBJECTIVE: To investigate the anti-neuroinflammatory activities of PN on lipopolysaccharide (LPS)-induced inflammation in a coculture system of microglia and neuronal cells. METHODS: ELISA and qRT-PCR were used to assess cytokine expression. The phosphorylation of mitogen-activated protein kinases (MAPKs) was determined by Western blotting. Microglia-mediated neuroinflammation was evaluated using a BV-2 microglia-N2a neuron transwell co-culture. RESULTS: PN extract and its component, gallic acid, decreased LPS-induced the mRNA expression of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), as well as IL-6 protein levels in both microglial monoculture and coculture systems. This was accompanied by a reduction in neurodegeneration triggered by microglia in N2a neurons with increased neuronal integrity markers (ßIII tubulin and tyrosine hydroxylase (TH)). These effects were caused by the ability of PN extract to inhibit extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. CONCLUSION: This is the first study to show that PN extract inhibits neurodegeneration in LPS-activated BV-2 microglia by targeting ERK signaling activity.
Assuntos
Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Microglia , Extratos Vegetais , Animais , Técnicas de Cocultura , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , RatosRESUMO
OBJECTIVE: To investigate pharmacodynamic effects of modified Gexiazhuyu decoction (MGXZYD) and explore the underlying mechanism in the treatment of chronic salpingitis METHODS: Chronic salpingitis model rats were firstly constructed and the blood was collected to detect the whole blood viscosity and plasma viscosity. Rat oviduct were collected to evaluate the macroscopic damage and the pathological injury and fibrosis of oviduct by hematoxylin-eosin (HE) and Masson staining. Elisa assay was to detect the production interleukin-1 ß (IL-1ß) in serum and collagen I (COL-1), matrix metalloprotein 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1) in oviduct tissue. And immunohistochemical staining with MMP-9 and TIMP-1 in oviduct tissue were examined. Western blot was used to detect the expressions of p38 mitogen-activated protein kinases (p38MAPK), phospho-p38MPAK (p-p38MPAK), transforming growth factor-ß1 (TGF-ß1) in oviduct. The expression of α-smooth muscle actin (α-SMA), p-p38MPAK, in oviduct tissue were detected by immunofluorescence method. The mRNA of p-p38MAPK, α -SMA, COL-1, MMP-9, TIMP-1 was measured by reverse transcription-polymerase chain reaction. RESULTS: Rats administrated with MGXZYD demonstrated decreased the whole blood viscosity and plasma viscosity. MGXZYD obviously improved the tubal wall thickening, swelling and pelvic adhesion. And HE and Masson staining showed MGXZYD improved the pathological injury and fibrosis of oviduct. The results of MTT assay and flow cytometry indicated that MGXZYD could decreased the NIN-3T3 cells viability and improved the apoptosis. Besides, MGXZYD inhibited the protein and / or mRNA of TGF-ß1, IL-1ß, COL-1, α-SMA, p-p38MAPK expressions and increased the production of MMP-9/TIMP-1. CONCLUSION: MGXZYD could prevent the progression of chronic salpingitis by inhibited the fibrocyte and inflammation which inhibited the p38 MAPK signaling pathway.
Assuntos
Salpingite , Inibidor Tecidual de Metaloproteinase-1 , Animais , Feminino , Fibrose , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , RNA Mensageiro , Ratos , Salpingite/tratamento farmacológico , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Corilagin (CLG) is a hydrolyzable tannin and possesses various pharmacological activities. Here, we investigated the impact of CLG as an anti-tumor agent against human gastric tumor cells. We observed that CLG could cause negative regulation of JAKs-Src-STAT3/5 signaling axis in SNU-1 cells, but did not affect these pathways in SNU-16 cells. Interestingly, CLG promoted the induction of mitogen-activated protein kinases (MAPKs) signaling pathways in only SNU-16 cells, but not in the SNU-1 cells. CLG exhibited apoptotic effects that caused an increased accumulation of the cells in sub-G1 phase and caspase-3 activation in both SNU-1 and SNU-16 cell lines. We also noticed that CLG and docetaxel co-treatment could exhibit significantly enhanced apoptotic effects against SNU-1 cells. Moreover, the combinations treatment of CLG and docetaxel markedly inhibited cell growth, phosphorylation of JAK-Src-STAT3 and induced substantial apoptosis. Additionally, pharmacological inhibition of JNK, p38, and ERK substantially blocked CLG-induced activation of MAPKs, cell viability, and apoptosis, thereby implicating the pivotal role of MAPKs in the observed anti-cancer effects of CLG. Taken together, our data suggest that CLG could effectively block constitutive STAT3/5 activation in SNU-1 cells but induce sustained MAPKs activation in SNU-16 cells.
Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias Gástricas , Apoptose , Linhagem Celular Tumoral , Docetaxel/farmacologia , Glucosídeos , Humanos , Taninos Hidrolisáveis/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológicoRESUMO
Since ancient times, honey has been used in traditional medicine owing to its pharmacological effects. It possesses anticancer properties. However, the therapeutic implications of Sangju honey in cancer remains unknown. Therefore, we aimed to demonstrate the potential anticancer effects of Sangju honey on human oral squamous cell carcinoma (OSCC), particularly focusing on epithelial-mesenchymal transition (EMT) and apoptotic and mitogen-activated protein kinase (MAPK) signaling pathways. Ca9-22 and YD-10B human OSCC cells were treated with 0.25% or 0.5% Sangju honey, and the cell viability was examined using the Cell Counting Kit-8 assay. Cell morphology studies were conducted to observe morphological changes, and the wound-healing assay was performed to evaluate the proliferation of honey-treated OSCC cells. Western blot analysis was conducted to investigate protein expression related to EMT and apoptotic and MAPK signaling pathways. Sangju honey reduced cell viability, induced morphological changes, and significantly suppressed the proliferation and migration of Ca9-22 and YD-10B cells. The expression of E-cadherin and N-cadherin was increased and decreased, respectively, in both OSCC cell lines. Moreover, Sangju honey stimulated apoptosis by increasing the expression of p21, p53, cleaved caspase 3, and caspase 9. Furthermore, it downregulated the expression of phospho (p)-extracellular signal-regulated kinases 1 and 2, p-c-Jun amino-terminal kinase, and p-p38 in Ca9-22 and YD-10B cells. Sangju honey inhibits Ca9-22 and YD-10B cell proliferation by regulating EMT, inducing apoptosis, and suppressing the MAPK signaling pathway. Thus, it is a potential anticancer agent for human OSCC.
RESUMO
Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.