RESUMO
Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.
Assuntos
Citrus , Limoninas , Anticorpos Monoclonais , Limoninas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em TandemRESUMO
Gardenia jasminoides Ellis, a plant widely used in traditional medicine, is known for its array of biological activities. A key bioactive compound, geniposide (GE), an iridoid glycoside, significantly contributes to the medicinal properties of the plant, with potential side effects. Thus, a reliable and efficient method for GE detection is required to ensure the quality of medicinal-grade G. jasminoides Ellis. This study developed such a method by first synthesizing GE-bovine serum albumin conjugates to function as immunizing agents in mice. This led to the production of a monoclonal antibody (mAb 3A6) against GE from the fusion of splenocytes from immunized mice with myeloma cells (P3U1), resulting in a hybridoma that produces mAb 3A6. Thereafter, we developed a mAb 3A6-based indirect competitive enzyme-linked immunosorbent assay (icELISA). The icELISA exhibited satisfactory sensitivity (0.391-12.5 µg/ml) and repeatability (coefficients of variation <10%). The accuracy of this method was validated through a spike-recovery assay (recovery of 101-112%). Furthermore, the icELISA was employed to determine the GE content in plant and Kampo medicine samples. The GE content positively correlated with those determined by high-performance liquid chromatography-ultraviolet. The proposed icELISA is rapid, cost-effective, and reliable for high-throughput GE detection in G. jasminoides Ellis, thereby contributing to the improved quality control and standardization of this valuable medicinal plant.
Assuntos
Gardenia , Medicina Kampo , Camundongos , Animais , Anticorpos Monoclonais , Estrutura Molecular , IridoidesRESUMO
PURPOSE: Anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) is the key drug for RAS/BRAF V600E wild-type metastatic colorectal cancer (mCRC). However, anti-EGFR mAb-induced skin fissures often affect a patient's quality of life. Shiunko, a traditional Japanese topical herbal medicine, is used for burns and dermatitis and may potentially have wound-healing effects. Herein, we report cases of patients with mCRC who were treated with Shiunko for anti-EGFR mAb-induced skin fissure. METHODS: We retrospectively reviewed consecutive patients with mCRC who received an anti-EGFR mAb-containing regimen and were treated with Shiunko twice a day for skin fissures at the National Cancer Center Hospital East between March 2022 and December 2022. Skin fissures were assessed at baseline and at every visit until 28 days after Shiunko initiation according to CTCAE v5.0. RESULTS: Among the 11 patients, 5 patients were female; the median age was 61 (range, 43-79) years. The median treatment duration with anti-EGFR mAb before Shiunko initiation was 13.1 (range, 6-52) weeks. Skin moisturizer and topical steroids were applied for skin fissures in 11 and 5 patients, respectively. All patients had grade 2 skin fissures at baseline of Shiunko initiation. Two weeks after Shiunko initiation, complete recovery was noted in 4 patients and improvement to grade 1 was noted in 6 patients. There were no Shiunko-related adverse events. Ten patients continued anti-EGFR mAb treatment until disease progression, while 1 patient discontinued anti-EGFR mAb treatment due to severe eruptions. CONCLUSION: Shiunko could be a treatment option for anti-EGFR mAb-induced skin fissure. Further studies are warranted to investigate the efficacy and safety of Shiunko for anti-EGFR mAb-induced skin fissure.
Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/efeitos adversos , Cetuximab/efeitos adversos , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Receptores ErbB/metabolismo , Qualidade de Vida , Estudos RetrospectivosRESUMO
Saikosaponins are naturally occurring oleanane-type triterpenoids that are found in Bupleuri radix (root of Bupleurum falcatum) and exhibit a broad biological activity spectrum. Saikosaponin b2 (SSb2) is the main saikosaponin in Kampo medicine extracts and is a designated quality control marker for the same in the Japanese Pharmacopeia. Although some monoclonal antibodies (mAbs) against saikosaponins have been produced to evaluate the quality of Bupleuri radix and related products, anti-SSb2 mAbs have not been used to quantify SSb2 in Kampo medicines. To address this knowledge gap, we herein established a new hybridoma cell line secreting a highly specific anti-SSb2 mAb and developed an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on this mAb for the detection of SSb2 in Bupleuri radix-containing Kampo medicines. The generated SSb2-recognized mAb exhibited high specificity to SSb2 in icELISA. The developed assay featured high sensitivity (linearity range = 1.95-125 ng/ml), accuracy, precision and reproducibility (coefficient of variation < 5%), and the thus determined SSb2 contents were strongly correlated with those obtained using liquid chromatograph-mass spectrometer. These results suggest that the anti-SSb2 mAb-based icELISA method can be used for the quality control and standardization of Kampo medicines containing Bupleuri radix.
Assuntos
Ácido Oleanólico , Saponinas , Anticorpos Monoclonais , Medicina Kampo , Reprodutibilidade dos Testes , Saponinas/análise , Controle de Qualidade , Ensaio de Imunoadsorção EnzimáticaRESUMO
INTRODUCTION: Chronic rhinosinusitis with nasal polyps (CRSwNP), especially CRSwNP with type 2 inflammation, remains the most difficult-to-treat subtype with high prevalence worldwide. The emergence of biologics has the potential to fulfill the unmet medical needs of patients with CRSwNP driven by type 2 inflammation. AREAS COVERED: A current review of the literature was performed to overview current and emerging biological therapies in the treatment of CRSwNP. EXPERT OPINION: In an era of precision medicine, biologics have been given expectations to provide customized therapies to patients with CRSwNP, particularly those with refractory CRSwNP. Large clinical trials and real-world experiences are both essential for the application of biologics. Moreover, to make biological therapy more tailored to patients, an in-depth understanding of the different mechanisms of biologics, further elucidating the relationship between biologics and conventional medical and surgical treatments, and identifying predictive biomarkers warrant thorough investigations.
Assuntos
Produtos Biológicos , Pólipos Nasais , Rinite , Sinusite , Humanos , Rinite/tratamento farmacológico , Pólipos Nasais/complicações , Pólipos Nasais/tratamento farmacológico , Inflamação/tratamento farmacológico , Sinusite/complicações , Sinusite/tratamento farmacológico , Terapia Biológica , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doença CrônicaRESUMO
Upon assessing the comparability between a biosimilar mAb and its reference product by non-reducing CE-SDS, increased levels of a heavy-heavy-light chain (HHL) variant, present as a low molecular weight (LMW) peak, were observed. RPLC-MS applied at top, middle-up and bottom-up level revealed the existence of Cys-to-Tyr substitutions, predominantly at position HC226 involved in connecting LC and HC, explaining the abundant HHL levels. Antigen binding was not impacted by the presence of this size variant suggesting a non-covalent association of Tyr substituted HHL and LC. The latter complex is not maintained in the denaturing conditions associated with CE-SDS and RPLC-MS. Its existence could, nevertheless, be confirmed by native SEC-MS which preserves non-covalent protein interactions during separation and electrospray ionization. Amino acid analysis furthermore demonstrated a depletion of Cys during the fed-batch process indicating that the observed size/sequence variant is not of genetic but rather of metabolic origin. Native SEC-MS showed that supplementing the cell culture medium with Cys halts misincorporation of Tyr and promotes the formation of the desired mAb structure. To the best of our knowledge, Cys-to-Tyr substitutions preventing interchain disulfide bridge formation have not been described earlier. This observation adds to the impressive structural heterogeneity reported to date for mAbs.
RESUMO
BACKGROUND: The immune checkpoint inhibitor (ICI) anti-PD-L1 monoclonal antibody can inhibit the progress of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transformation (EMT) can promote tumor migration and the formation of immune-suppression microenvironment, which affects the therapeutic effect of ICI. Yin-yang-1 (YY1) is an important transcription factor regulating proliferation, migration and EMT of tumor cells. This work proposed a drug-development strategy that combined the regulation of YY1-mediated tumor progression with ICIs for the treatment of HCC. METHODS: We first studied the proteins that regulated YY1 expression by using pull-down, co-immunoprecipitation, and duo-link assay. The active compound regulating YY1 content was screened by virtual screening and cell-function assay. Isorhamnetin (ISO) and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles (HMSN-ISO@ProA-PD-L1 Ab) were prepared as an antitumor drug to play a synergistic anti-tumor role. RESULTS: YY1 can specifically bind with the deubiquitination enzyme USP7. USP7 can prevent YY1 from ubiquitin-dependent degradation and stabilize YY1 expression, which can promote the proliferation, migration and EMT of HCC cells. Isorhamnetin (ISO) were screened out, which can target USP7 and promote YY1 ubiquitin-dependent degradation. The cell experiments revealed that the HMSN-ISO@ProA-PD-L1 Ab nanoparticles can specifically target tumor cells and play a role in the controlled release of ISO. HMSN-ISO@ProA-PD-L1 Ab nanoparticles inhibited the growth of Hepa1-6 transplanted tumors and the effect was better than that of PD-L1 Ab treatment group and ISO treatment group. HMSN-ISO@ProA-PD-L1 Ab nanoparticles also exerted a promising effect on reducing MDSC content in the tumor microenvironment and promoting T-cell infiltration in tumors. CONCLUSIONS: The isorhamnetin and anti-PD-L1 antibody dual-functional nanoparticles can improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. This study demonstrated the possibility of HCC treatment strategies based on inhibiting USP7-mediated YY1 deubiquitination combined with anti-PD-L1 monoclonal Ab.
Assuntos
Carcinoma Hepatocelular , Neuropatia Hereditária Motora e Sensorial , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral , Peptidase 7 Específica de Ubiquitina , Ubiquitinas/farmacologia , Linhagem Celular Tumoral , Fator de Transcrição YY1/metabolismoRESUMO
Near-infrared photoimmunotherapy (NIR-PIT) is a new phototherapy that utilizes a monoclonal antibody (mAb) against cancer antigens and a phthalocyanine dye, IRDye700DX (IR700) conjugate (mAb-IR700). Photodynamic therapy (PDT) is a combination therapy that utilizes photoreactive agents and light irradiation as well as NIR-PIT. In the present study, we compared these therapies in vitro. The characterization of cellular binding/uptake specificity and cytotoxicity were examined using two mAb-IR700 forms and a conventional PDT agent, talaporfin sodium, in three cell lines. As designed, mAb-IR700 had high molecular selectivity and visualized target molecule-positive cells at the lowest concentration examined. NIR-PIT induced necrosis and damage-associated molecular patterns (DAMPs), a surrogate maker of immunogenic cell death. In contrast, talaporfin sodium was taken up by cells regardless of cell type, and its uptake was enhanced in a concentration-dependent manner. PDT induced cell death, with the pattern of cell death shifting from apoptosis to necrosis depending on the concentration of the photosensitizer. Induction of DAMPs was observed at the highest concentration, but their sensitivity differed among cell lines. Overall, our data suggest that molecule-specific NIR-PIT may have potential advantages compared with PDT in terms of the efficiency of tumor visualization and induction of DAMPs.
RESUMO
CONTEXT: Burosumab is approved for the treatment of X-linked hypophosphatemia (XLH). OBJECTIVE: To assess the efficacy and safety of burosumab in XLH patients, we conducted a systematic review and meta-analysis. METHODS: We searched PubMed, the Cochrane Library, Embase, ClinicalTrials.gov, and Web of Science for studies on the use of burosumab in patients with XLH. Meta-analysis of randomized controlled trials (RCTs) and single-arm trials (SATs) was done to explore burosumab treatment on the efficacy and safety of XLH. RESULTS: Of the 8 eligible articles, 5 were from RCTs and 3 were from SATs. Compared with the control group in RCTs, serum phosphorus level was significantly increased in the burosumab group (0.52 mg/dL, 95% CI 0.24-0.80 mg/dL). A meta-analysis of the burosumab arms in all trials revealed significant increase in serum phosphorus levels (0.78 mg/dL, 95% CI 0.61-0.96 mg/dL), TmP/GFR (0.86 mg/dL, 95% CI 0.60-1.12 mg/dL), and 1,25-dihydroxyvitamin D level (13.23 pg/mL, 95% CI 4.82-21.64 pg/mL) as well. Changes in secondary events also validated the effects of burosumab treatment. Compared with the control group, in RCTs, the safety profile of burosumab is not much different from the control group. Data of the single-arm combined group demonstrated the incidence of any treatment emergency adverse event (TEAE) and the related TEAE rate were high, but the severity of most adverse events is mild to moderate, and the rate of serious TEAE is low. CONCLUSION: This study suggests that burosumab can be an option for patients with XLH and did not significantly increase the incidence of adverse events.
Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Anticorpos Monoclonais/efeitos adversos , Fatores de Crescimento de Fibroblastos , Fósforo , Hipofosfatemia/induzido quimicamenteRESUMO
A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high-producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three-level factorial experimental design was performed in fed-batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter-influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late-stage ROS activity in a dose-dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity.
Assuntos
Cobre , Oligoelementos , Cricetinae , Animais , Cricetulus , Células CHO , Projetos de Pesquisa , Técnicas de Cultura de Células , Zinco , Metais , Técnicas de Cultura Celular por Lotes , Reatores BiológicosRESUMO
Zearalenone(ZEN) is a toxic metabolite produced by Fusarium culmorum, F. graminearum, F. tricinctum, and other fungi, with estrogenic characteristics. Exposure to or ingestion of ZEN during pregnancy can cause reproductive dysfunction, miscarriage, stillbirth, and malformation, and seriously endanger human life and health. The detection methods for ZEN in the Chinese Pharmacopoeia(2020 edition) are liquid chromatography(LC) and liquid chromatography-mass spectrometry(LC-MS), and it is stipulated that ZEN should not exceed 500 µg in 1 000 g of Coicis Semen. Although these detection methods by instruments can achieve the qualitative and quantitative analysis of ZEN in Coicis Semen, their high detection cost and long periods hinder the rapid screening of a large number of samples in the field. In this study, the synthesized ZEN hapten was conjugated with bovine serum albumin(BSA) and ovalbumin(OVA) to obtain the complete ZEN antigen. By virtue of antibody preparation techniques, ZEN monoclonal antibody 4F6 was prepared, which showed 177.5%, 137.1%, and 109.7% cross-reactivity with ZEN structural analogs zearalanol, zearalenone, and α-zearalenol, respectively, and no cross-reactivity with other fungal toxins such as aflatoxin. Direct competitive enzyme-linked immunosorbent assay(dcELISA) based on ZEN monoclonal antibody 4F6 was developed for the determination of ZEN in Coicis Semen with an IC_(50) of 1.3 µg·L~(-1) and a detection range of 0.22-21.92 µg·L~(-1). The recoveries were 83.91%-105.3% and the RSD was 4.4%-8.0%. The established dcELISA method was used to determine the ZEN residuals in nine batches of Coicis Semen samples, and the results were validated by LC-MS. The correlation between the two detection methods was found to be 0.993 9, indicating that the established dcELISA could be used for the rapid qualitative and quantitative detection of ZEN residuals in Coicis Semen.
Assuntos
Coix , Micotoxinas , Zearalenona , Humanos , Feminino , Gravidez , Ensaio de Imunoadsorção Enzimática , Anticorpos MonoclonaisRESUMO
INTRODUCTION: Hesperidin (hesperetin 7-rutinoside, HP), a flavonoid glycoside found in Citrus unshiu Marcowicz or Citrus reticulata Blanco (Rutaceae), has been reported to exert a variety of pharmacological effects. As the efficacies and qualities of their dried peel, Chinpi and its derived Kampo medicines can be evaluated by their HP contents, a method for HP detection must be developed. OBJECTIVES: To produce a specific monoclonal antibody against HP (mAb 5D12) to detect the HP contents in Japanese traditional medicines via indirect competitive enzyme-linked immunosorbent assay (icELISA). METHOD: BALB/c mice were immunised with many haptens of HP-bovine serum albumin (BSA) conjugates that were prepared using sodium periodate (NaIO4 ) to cause an immune response. In addition, conventional hybridoma techniques were utilised to generate mAb 5D12. RESULTS: The detection range of HP by the mAb 5D12-based icELISA was 1.56-25.0 ng/mL, with a detection limit of 1.12 ng/mL. The maximum coefficient of variation, as evaluated from the intra- and inter-assays, was <10.0%, and the percentages of recovery, as determined by the spike-recovery tests, were 105%-115%. Moreover, the HP content, which was obtained from the developed icELISA, correlated well with that obtained via high-performance liquid chromatography-ultraviolet (HPLC-UV). CONCLUSION: These validation analyses revealed that the established icELISA technique exhibited high precision and accuracy. Notably, this is the first report on the development of icELISA for the HP content-based quality control of Chinpi and its derived Kampo medicines.
RESUMO
Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the development of a unique formulation for our first-in-class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, confirmed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) Spectroscopy. Three rapid freeze-thaw cycles at -80 °C/25 °C or -80 °C/37 °C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (Tm) for formulated MS-Hu6 increased by >4.80 °C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.
Assuntos
Anticorpos Monoclonais , Hormônio Foliculoestimulante , Anticorpos Monoclonais/química , Temperatura , Varredura Diferencial de Calorimetria , Viscosidade , Estabilidade ProteicaRESUMO
INTRODUCTION: Glabridin is a unique isoflavonoid found only in Glycyrrhiza glabra L. The pharmacological effects of glabridin are well established, especially for beauty- and wellness-related uses, such as antioxidant, anti-inflammatory, ultraviolet (UV) protection, and skin-lightening effects. Therefore, glabridin is often found in commercial products such as creams, lotions, and dietary supplements. OBJECTIVE: This study aimed to develop an enzyme-linked immunosorbent assay (ELISA) using a glabridin-specific antibody. METHOD: Immunogen conjugation of glabridin-bovine serum albumin was performed via the Mannich reaction, and the resulting conjugates were injected into BALB/c mice. Subsequently, hybridomas were produced. An ELISA method for glabridin determination was developed and validated. RESULT: A highly specific antibody against glabridin was produced using clone 2G4. The assay range for the determination of glabridin was 0.28-7.02 µg/ml, with a detection limit of 0.16 µg/ml. The validation parameters in terms of accuracy and precision met the acceptable criteria. Standard curves of glabridin in various matrices were compared to evaluate the matrix effect on human serum using ELISA. Standard curves of the human serum and water matrix were obtained in the same manner, and the measurement range was 0.41-10.57 µg/ml. CONCLUSION: The developed ELISA method was used to quantify glabridin in plant materials and products with high sensitivity and specificity, and has potential applications in quantifying compounds in plant-derived products and human serum samples.
Assuntos
Anticorpos Monoclonais , Isoflavonas , Animais , Camundongos , Humanos , Fenóis/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Isoflavonas/farmacologiaRESUMO
Buckwheat is considered a severe food allergen, and its adulteration and mislabeling cause serious health risks. For protecting consumers suffering from buckwheat allergy, a high-sensitivity detection method is necessary to accurately identify intentional or unintentional adulteration of buckwheat in processed foods. The study revealed that buckwheat contains a significant amount of thermally stable-soluble proteins (TSSPs), which keep antigenicity even after heat treatment. Therefore, we used TSSPs to produce three monoclonal antibodies (MAbs) specific to buckwheat. A MAbs cocktail solution was subjected to enhance the sensitivity of an indirect enzyme-linked immunosorbent assay (iELISA), and the LOD was 1 ng/mL. The MAbs cocktail solution based-iELISA can successfully detect buckwheat adulterated in processed foods. The results suggested that the TSSPs in buckwheat can be used as suitable immunogens, and MAbs produced can be used as bioreceptor to develop immunoassays and biosensors for detecting buckwheat in food facilities and processed foods.
Assuntos
Produtos Biológicos , Fagopyrum , Hipersensibilidade Alimentar , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio , AlérgenosRESUMO
Neonicotinoid insecticides (NNIs) are extensively used across the agricultural products and foods. In order to meet the rapid detection requirements, a novel broad-specificity monoclonal antibody against NNIs was developed for the first time using a multi-immunogen strategy. The antibody's high affinity and its ability to bind target molecules were verified by ic-ELISA. Furthermore, molecular docking was used to evaluate the pivotal forces affecting binding affinity and to determine binding sites. Subsequently, a highly sensitive gold nanoparticle-based immunochromatographic assay was established for the rapid detection of eight NNIs and the IC50 values were 0.03-1.61 ng/mL. The limits of detection for ginseng and tomato ranged from 0.76 to 30.19 µg/kg and 0.87 to 31.57 µg/kg, respectively. The spiked recovery ranged from 72.04% to 120.74%, and the coefficient of variation were less than 9.0%. This study provides a new direction for the development of multiple NNIs residue immunoassays.
Assuntos
Anticorpos Monoclonais , Inseticidas , Nanopartículas Metálicas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio , Inseticidas/análise , Simulação de Acoplamento Molecular , Neonicotinoides/química , Panax , Ouro/químicaRESUMO
BACKGROUND: Newer personalized medicines including targeted therapies such as PARP inhibitors and CDK 4/6 inhibitors have been shown to improve the survival of breast and gynaecological cancer patients. However, efficacy outcomes may be ham5pered by treatment discontinuation due to targeted therapy-related adverse drug reactions or resistance. Studies have suggested that add-on mistletoe (Viscum album L., VA) improves the quality of life and ameliorates the cytotoxic side effects of standard oncological therapy in cancer patients. The primary objective of this real-world data study was to determine the safety profile of targeted therapy in combination with add-on Helixor® VA therapy compared to targeted therapy alone in breast and gynecological cancer patients. METHODS: The present study is a real-world data observational cohort study utilizing demographic and treatment data from the accredited national Network Oncology (NO) registry. The study has received ethics approval. The safety profile of targeted therapies with or without Helixor® VA therapy and safety-associated variables were evaluated by univariate and adjusted multivariable regression analyses. RESULTS: All stages of breast and gynecological cancer patients (n = 242) were on average 54.5 ± 14.2 years old. One hundred and sixty patients (66.1%) were in the control (CTRL, targeted therapy) and 82 patients (33.9%) were in the combinational (COMB, targeted plus Helixor® VA therapy) group. The addition of Helixor® VA did not hamper the safety profile (χ2 = 0.107, p-value = 0.99) of targeted therapy. Furthermore, no adverse events and a trend towards an improved targeted therapy adherence were observed in the COMB group. CONCLUSIONS: The present study is the first of its kind showing the applicability of Helixor® VA in combination with targeted therapies. The results indicate that add-on Helixor® VA does not negatively alter the safety profile of targeted therapies in breast and gynaecological cancer patients.
Assuntos
Neoplasias , Viscum album , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Neoplasias/induzido quimicamente , Extratos Vegetais/farmacologia , Qualidade de Vida , FemininoRESUMO
Assessment of reversibility from nonclinical toxicity findings in animals with potential adverse clinical impact is required during pharmaceutical development, but there is flexibility around how and when this is performed and if recovery animals are necessary. For monoclonal antibodies (mAbs) and in accordance with ICH S6(R1) if inclusion of recovery animals is warranted, this need only occur in one study. Data on study designs for first-in-human (FIH)-enabling and later-development toxicity studies were shared from a recent collaboration between the NC3Rs, EPAA, Netherlands Medicines Evaluation Board (MEB) and 14 pharmaceutical companies. This enabled a review of practices on recovery animal use during mAb development and identification of opportunities to reduce research animal use. Recovery animals were included in 68% of FIH-enabling and 69% of later-development studies, often in multiple studies in the same program. Recovery groups were commonly in control plus one test article-dosed group or in all dose groups (45% of studies, each design). Based on the shared data review and conclusions, limiting inclusion of recovery to a single nonclinical toxicology study and species, study design optimisation and use of existing knowledge instead of additional recovery groups provide opportunities to further reduce animal use within mAb development programs.
Assuntos
Anticorpos Monoclonais , Projetos de Pesquisa , Animais , Humanos , Anticorpos Monoclonais/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Desenvolvimento de Medicamentos , Grupos ControleRESUMO
BACKGROUND: Data on severe acute respiratory distress syndrome coronavirus 2 monoclonal antibody (SARS-CoV-2-specific mAb) use in hematologic malignancy and hematopoietic cell transplantation (HM/HCT) patients are limited. Here, we describe our experience with the use of casirivimab-imdevimab or bamlanivimab for the treatment of coronavirus disease 2019 (COVID-19) in HM/HCT patients. METHODS: This was a retrospective chart review at the University of Miami Hospital and Sylvester Comprehensive Cancer Center for HM/HCT patients with COVID-19 who received casirivimab-imdevimab or bamlanivimab from November 21, 2020, to September 30, 2021. Outcomes measured were mortality, hospital admission, and infusion reaction to SARS-CoV-2-specific mAbs. RESULTS: We identified 59 HM/HCT patients with mild to moderate COVID-19 who received casirivimab-imdevimab or bamlanivimab. Median age was 57 years (interquartile range [IQR]: 45-65). Among the 59 patients, 25 (42%) received cellular therapy: 14 (24%) had undergone allogeneic HCT, nine (15%) autologous HCT, and two (3%) received chimeric antigen receptor T-cell therapy. The median time from COVID-19 symptom onset to SARS-CoV-2-specific mAb administration was 4 (IQR: 3-6) days. Forty-six (78%) patients received SARS-CoV-2-specific mAbs as outpatients and 13 (22%) patients received SARS-CoV-2-specific mAbs during hospitalization. Among patients who received SARS-CoV-2-specific mAbs as outpatients, only four (9%) visited the emergency department at days 10, 11, 15, and 35 after SARS-CoV-2-specific mAb administration. None of these four patients required hospital admission. Among the hospitalized patients, five (38%) were admitted to the hospital with neutropenic fever, four (31%) were already hospitalized for transplantation and cellular therapy, three (23%) were admitted for monitoring of COVID-19 symptoms, and one (8%) was admitted with acute kidney injury. Three hospitalized patients (23%) died at 14, 35, and 59 days after SARS-CoV-2-specific mAb administration; two of these three deaths were attributed to COVID-19 infection. One patient developed an immediate infusion reaction to bamlanivimab, and no infusion reactions were reported to casirivimab-imdevimab use. CONCLUSION: During the alpha and delta variant surges, early administration of bamlanivimab or casirivimab-imdevimab prevented hospitalization and death when given in the outpatient setting. Among patients who received mAbs at or after hospital admission, the risk of COVID-19 disease progression and death remains significant. Larger studies of the use of mAb therapy to treat COVID-19 in this population are needed.
Assuntos
COVID-19 , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Estudos Retrospectivos , Anticorpos Monoclonais , Anticorpos AntiviraisRESUMO
In this case-study, we demonstrate an approach for identifying correlations between nutrients/metabolites in the spent medium of CHO cell cultures and cell growth, mAb titre and critical quality attributes, using multivariate analyses, which can aid in selection of targets for medium and feed optimization. An extensive LC-MS-based method was used to analyse the spent medium composition. Partial least squares (PLS) model was used to identify correlations between nutrient composition and cell growth and mAb titre and orthogonal projections to latent structures (OPLS) model was used to determine the effect of the changing nutrient composition during the culture on critical quality attributes. The PLS model revealed that the initial concentrations of several amino acids as well as pyruvic acid and pyridoxine, governed the early cell growth, while the concentrations of TCA cycle intermediates and several vitamins highly influenced the stationary phase, in which mAb production was maximum. For the first time, with the help of the OPLS model, we were able to draw correlations between nutrients/metabolites during the culture and critical quality attributes, for example, optimizing the supply of certain amino acids and vitamins could reduce impurities while simultaneously increasing desirable glycoforms. The unique correlations obtained from such an exploratory analysis, utilizing conditions that are commonly adopted in early process development, present opportunities for optimizing the compositions of the growth media and the feed media for enhancing cell growth, mAb production and quality, thereby proving to be a useful preliminary step in bioprocess optimization. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00561-z.