Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565381

RESUMO

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Assuntos
Ferula , Inseticidas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ferula/química , Inseticidas/farmacologia , Inseticidas/isolamento & purificação , Inseticidas/química , Animais , Candida albicans/efeitos dos fármacos , Frutas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Simulação de Acoplamento Molecular , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Simulação por Computador , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química
2.
Phytomedicine ; 127: 155483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432036

RESUMO

BACKGROUND: Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE: MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS: Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS: Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Paeonia , Glicosídeos/farmacologia , Paeonia/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Monoterpenos/farmacologia , Monoterpenos/química , Anti-Inflamatórios
3.
J Ethnopharmacol ; 328: 117921, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369065

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tabernaemontana genus belongs to the Apocynaceae family of which 30 species are found in Brazil. Some Tabernaemontana species are used by Brazilian indigenous people and other communities, or are listed in the Yanomami Pharmacopeia. Ethnopharmacological data include use(s) for muscle problems, depressed sternum, back pain, abscess, indigestion, eye irritation, earache, itching, vaginal discharge, as an aid for older people who are slow and forgetful, mosquito and snake bites, infection by the human botfly larvae, calmative, and fever. Obviously, many of these uses are attributed to the alkaloids found in Tabernaemontana species. AIM OF THE REVIEW: The aim is to gather information on Tabernaemontana species occurring in Brazil, as sources of monoterpene indole alkaloids (MIAs). In addition, we aim to collect reported experimental demonstrations of their biological activity, which may provide the foundation for further studies, including phytochemistry, the development of medicinal agents, and validation of phytopreparations. MATERIAL AND METHODS: The Brazilian Flora 2020 database was used as source for Tabernamontana species occurring in Brazil. The literature review on these species was collected from Web of Science, Scopus, PubMed, and Scifinder. The keywords included names and synonyms of Tabernaemontana species found in Brazil, which were validated by the Word Flora Online Plant List. RESULTS: A literature survey covering the time frame from 1960 until June 2023 resulted in 121 MIAs, including 48 not yet reported in the last review published in 2016. Some alkaloid extracts, fractions, and isolated alkaloids present evidenced biological activity, such as anticancer, anti-inflammatory, antinociceptive, antimicrobial, antiparasitic, antiviral, and against snake venoms, among others. Notably, ethnopharmacological based information has been the basis of some reports on Tabernaemontana species. CONCLUSIONS: Our literature survey shows that Tabernaemontana species present bioactive MIAs, such as voacamine and affinisine, demonstrating significant cytotoxicity activity against several tumoral cell lines. Those compounds can be considered promising candidates in the search for new anticancer drugs. However, the Amazonian plant biome is increasingly damaged, which may lead to the extinction of biological diversity. This threat may also affect Tabernaemontana species, which have scarcely been investigated regarding the potential of their phytochemicals for the development of new drugs.


Assuntos
Antineoplásicos , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Idoso , Animais , Antineoplásicos/farmacologia , Brasil , Alcaloides Indólicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Tabernaemontana/química
4.
Fitoterapia ; 174: 105828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296166

RESUMO

Aster tataricus L.f. is highly valued for its rich reserves of bioactive compounds. Our research focused on the identification of previously unreported compounds found within the ethanol extract of A. tataricus. Through meticulous spectroscopic analyses and computational methods like NMR calculations and ECD, we successfully elucidated the structures of five novel compounds termed tatarisides A-E (1-5), alongside two known compounds (6, 7). The anti-inflammatory assays conducted yielded noteworthy results, particularly in relation to compounds 1 and 5. These compounds exhibited significant potential in inhibiting the release of NO in LPS-induced RAW 264.7 cells, as evidenced by their respective IC50 values of 17.81 ± 1.25 µM and 13.32 ± 0.84 µM. The discovery of these new compounds adds to the existing knowledge of A. tataricus's chemical composition and potential applications.


Assuntos
Aster , Estrutura Molecular , Aster/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Etanol
5.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894657

RESUMO

Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.


Assuntos
Monoterpenos , Óleos Voláteis , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Timol , Antifúngicos , Atenção à Saúde
6.
Angew Chem Int Ed Engl ; 62(38): e202307995, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37549372

RESUMO

Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine ß-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.


Assuntos
Antineoplásicos , Produtos Biológicos , Mitragyna , Alcaloides de Triptamina e Secologanina , Saccharomyces cerevisiae/metabolismo , Mitragyna/metabolismo , Plantas/metabolismo , Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo
7.
Fitoterapia ; 169: 105568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315717

RESUMO

Five new 5-methyl-4-hydroxycoumarin polyketide derivatives (MPDs), delavayicoumarins A-E (1-5), were isolated from the whole plants of Gerbera delavayi. Among them, compounds 1-3 are the common monoterpene polyketide coumarins (MPCs), while 4 is a modified MPC with both the lactone ring contracted to a five-membered furan ring and a carboxyl at C-3, and 5 is a pair of unusual phenylpropanoid polyketide coumarin enantiomers (5a and 5b), featuring a phenylpropanoid unit at C-3. The planar structures were elucidated by spectroscopic methods and biosynthetic arguments, and the absolute configurations of 1-3, 5a and 5b were confirmed by calculated electronic circular dichroism (ECD) experiment. Furthermore, compounds 1-3, (+)-5 and (-)-5 were tested for the nitric oxide (NO) inhibitory activity by using lipopolysaccharide (LPS)-induced RAW 264.7 cells in vitro. The results showed that compounds 1-3, (+)-5 and (-)-5 remarkably inhibited NO production at the concentration of 10.0 µM, exhibiting that they have significant anti-inflammatory activity.


Assuntos
4-Hidroxicumarinas , Asteraceae , Policetídeos , Policetídeos/farmacologia , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico
8.
Phytochemistry ; 213: 113752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330032

RESUMO

Four undescribed tryptamine-derived alkaloids, hunteriasines A - D, were isolated and identified from Hunteria umbellata (Apocynaceae), together with fifteen known indole alkaloids. The chemical structure and absolute configuration of hunteriasine A were determined by spectroscopic and X-ray crystallographic data analyses. Hunteriasine A, featuring with a unique scaffold comprised of tryptamine and an unprecedented "12-carbon unit" moiety, is a zwitterionic indole-derived and pyridinium-containing alkaloid. Hunteriasines B - D were identified by spectroscopic data analyses and theoretical calculations. A plausible biogenetic pathway for hunteriasines A and B was proposed. The lipopolysaccharide-stimulated mouse macrophage cell line J774A.1 cell-based bioactivity assays revealed that (+)-eburnamine, strictosidinic acid, and (S)-decarbomethoxydihydrogambirtannine enhance the release of interleukin-1ß.


Assuntos
Alcaloides , Apocynaceae , Alcaloides de Triptamina e Secologanina , Camundongos , Animais , Alcaloides/farmacologia , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Apocynaceae/química , Extratos Vegetais/química , Triptaminas/farmacologia , Estrutura Molecular , Alcaloides de Triptamina e Secologanina/química
9.
Physiol Mol Biol Plants ; 29(4): 459-469, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37187774

RESUMO

Blumea balsamifera, a wooden plant belonging to the family Asteraceae, is a medicinal herb with anticancer, antiviral, and multiple pharmacological effects, which are believed to be caused by its essential oil. The essential oil from B. balsamifera is comprised of mono- and sesqui-terpenes as the majority. Unfortunately, this plant has been facing the challenge of resource shortage, which could be effectively alleviated by biological engineering. Therefore, the identification of key elements involved in the biosynthesis of active ingredients becomes an indispensable prerequisite. In this study, candidate genes encoding monoterpene synthase were screened by transcriptome sequencing combined with metabolomics profiling in the roots, stems, and leaves of B. balsamifera. Then, these candidates were successfully cloned and verified by heterologous expression and in vitro enzyme activity assays. As a result, six candidate BbTPS genes were isolated from B. balsamifera, of which three encoded single-product monoterpene synthases and one encoded a multi-product monoterpene synthase. Among them, BbTPS1, BbTPS3, and BbTPS4 could catalyze the formation of D-limonene, α-phellandrene, and L-borneol, respectively. Meanwhile, BbTPS5 functioned in catalyzing GPP into terpinol, ß-phellandrene, ß-myrcene, D-limonene, and 2-carene in vitro. In general, our results provided important elements for the synthetic biology of volatile terpenes in B. balsamifera, which laid a foundation for subsequent heterologous production of these terpenoids through metabolic engineering and increasing their yield, as well as promoting sustainable development and utilization of B. balsamifera. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01306-8.

10.
Fitoterapia ; 167: 105506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068714

RESUMO

The structures of the recently published monoterpene indole alkaloids penduflorines A and B (1a and 1b), isolated from Tabernaemontana penduliflora (Apocynaceae), have been revised. Rather than an inseparable mixture of two compounds, they appear to be the known alkaloid vobasine (2). Although we could not comprehensively revise the structures of penduflorines C-E due to lacking spectral data, since their structural elucidations were based on that of 1a and 1b, their structures should also be treated with caution.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Apocynaceae , Tabernaemontana , Tabernaemontana/química , Estrutura Molecular , Alcaloides Indólicos/química , Antineoplásicos Fitogênicos/química
11.
Phytochemistry ; 209: 113639, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889562

RESUMO

Gardneria distincta P. T. Li is traditionally applied as a herbal medicine for treatment various ailments, and is mainly distributed in Southwestern China. Under the guided separation of MS/MS-based molecular networking, eight undescribed oxindole alkaloids, gardistines A-H, as well as 17 known alkaloids were discovered from the whole parts of Gardneria distincta. Structural elucidation of these undescribed alkaloids was performed by various spectroscopic methods. Gardistine A is a rare oxindole gardneria alkaloid bearing an ester carbonyl group attached to C-18, which is the second reported alkaloid of oxindole gardneria-type. All of the identified monoterpene indole alkaloids were investigated for their anti-inflammatory activity in LPS-induced RAW 264.7 cells. Gardistines A-B and akuammidine demonstrated significant inhibitory effects on the expressions of nitric oxide, tumor necrosis factor alpha, and interleukin-6 at 20 µM.


Assuntos
Alcaloides , Espectrometria de Massas em Tandem , Oxindóis , Alcaloides/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Estrutura Molecular
12.
Chem Biodivers ; 20(3): e202201237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740572

RESUMO

Artemisia annua L. is a Chinese medicinal herb, but the origin of its pharmacological properties, including its anti-inflammatory activity, remain unknown. In this study, five new monoterpene glycosides (1-5) and two new sesquiterpene glycosides (6 and 7) were isolated from the aqueous extract of the aerial parts of A. annua. The structures of these glycosides were determined using high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, electronic circular dichroism calculations, and chemical hydrolysis methods. The anti-inflammatory activities of the isolated compounds were evaluated by down-regulating interleukin-6 (IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Notably, all the new compounds significantly inhibited the expression of IL-6 in a dose-dependent manner.


Assuntos
Artemisia annua , Artemisia , Sesquiterpenos , Artemisia annua/química , Glicosídeos/farmacologia , Monoterpenos/farmacologia , Interleucina-6 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Água , Sesquiterpenos/farmacologia , Artemisia/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-36748816

RESUMO

Bakuchiol, is a principal bioactive component present in seeds of Psoralea corylifolia. It is one of the important monoterpene phenols and has been reported to possess extensive pharmacological properties like antioxidant, anti-inflammatory, anticancer, and hepatoprotective. Bakuchiol also plays a significant role in mental disorders. With an aim to explore the pharmacological potential of plant Psoralea corylifolia and its bioactive constituent, Bakuchiol; which may act as a lead to develop new molecular entities as drugs. A substantial literature survey was performed by scientific search engines like PubMed, Scopus,Web of Science, Science Direct, etc., and were reviewed with particular emphasis on their scientific impact and novelty. The study concludes that both Psoralea and bakuchiol possess innumerable pharmacological potentials to treat multiple disorders. Altogether, the promising pharmacological activities of bakuchiol may open new probes for therapeutic invention in the management of numerous ailments. Thus, the present review gives the erudition of bakuchiol as d foundation for further studies on the molecular mechanisms of BXXXD in the treatment of T2DM.


Assuntos
Fabaceae , Psoralea , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Promoção da Saúde
14.
Anticancer Agents Med Chem ; 23(9): 989-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717993

RESUMO

BACKGROUND: Bakuchiol is a monoterpene phenol isolated from the seeds of Psoralea corylifolia Linn. It is used traditionally in Indian and Chinese medicine and has been reported to possess extensive pharmacological potential against a variety of ailments. A recent study enumerates the anticancer potential of bakuchiol. OBJECTIVE: The objective of the present review study is to explore the anticancer potential of bakuchiol which provides insight into the design and develop novel molecular entities against various disorders. METHODS: Current prose and patents emphasizing the anticancer potential of bakuchiol have been identified and reviewed with particular emphasis on their scientific impact and novelty. An extensive literature survey was performed and compiled via the search engine, PubMed, Science Direct, and from many reputed foundations. RESULTS: The study's findings suggested and verified the anticancer potential that Psoralea and bakuchiol against a variety of cancer. Both Psoralea and bakuchiol also portrayed synergistic or potentiating effects when given in combination with other anticancer drugs or natural compounds. CONCLUSION: Altogether, the promising anticancer potential of bakuchiol may open new probes for therapeutic invention in various types of tumors. Thus, the present review gives the erudition of bakuchiol and Psoralea as anticancer which paves the way for further work in exploring their potential.


Assuntos
Psoralea , Humanos , Extratos Vegetais/farmacologia , Fenóis/farmacologia , Sementes
15.
Int J Biol Macromol ; 226: 1360-1373, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442554

RESUMO

Plant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.


Assuntos
Alcaloides , Alcaloides de Vinca , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Alcaloides de Vinca/química , Alcaloides de Vinca/metabolismo
16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 301-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322162

RESUMO

Citral, a monoterpene which is a part of the essential oil of several medicinal plants, is generally regarded as safe for human and animal consumption. Studies have introduced citral as a functional component of some essential oils in anxiolytic and antidepressant therapies; however, the neuropharmacological characteristics of citral have not yet been reported. In the present study, we evaluated the anxiolytic activities of citral in comparison to two standard anxiolytics, diazepam and buspirone, in Swiss albino mice by intraperitoneal administration of 1, 2, 5, 10, and 20 mg/kg using elevated plus maze (EPM) and open-field test (OFT). Moreover, we also examined whether the GABAA-benzodiazepine and 5-HT1A receptor are involved in the anxiolytic-like effects of citral by pretreatment with flumazenil and WAY-100635, respectively. Citral dose-dependently decreased the number of border crossings and time spent in borders, and also the number of grooming and rearing in OFT without altering the exploratory behavior of mice. In the EPM, this monoterpene led to a significant increase in number of entries in open arms and time spent in open arms, as well as a decrease in time spent in closed arms. Pretreatment with flumazenil and WAY-100635 both could reverse the anxiolytic effects of the citral in the EPM. These results suggest that anxiolytic activity of citral occurs via the GABAA and 5-HT1A receptor modulation.


Assuntos
Ansiolíticos , Animais , Camundongos , Monoterpenos Acíclicos/farmacologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Comportamento Animal , Teste de Labirinto em Cruz Elevado , Flumazenil/farmacologia , Ácido gama-Aminobutírico/farmacologia , Aprendizagem em Labirinto , Receptor 5-HT1A de Serotonina
17.
Acta Pharmaceutica Sinica ; (12): 1307-1316, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978691

RESUMO

The goal of this work was to investigate the antidepressant fraction from Radix Paeoniae Alba and identify its major chemical constituents. Corticosterone injured rat phaeochromocytoma (PC12) cells and behavioral despair depression models of mice were used to evaluate the antidepressant effects of Radix Paeoniae Alba (Bai-Shao) ethanol extract (BS-E) and its three fractions (BS-10E, BS-60E, BS-95E) isolated by macroporous resin column chromatography. Animal experimental procedures were approved by the Animal Ethics Committee of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College (approval No.: SLXD-20210618051). The results showed that BS-E, BS-10E and BS-60E had protective effects against PC12 cells injury induced by corticosterone, among which BS-60E had the strongest protective effect. BS-60E could significantly shorten the time of forced swimming and tail suspension in despair depression models of mice, and was identified as the antidepressant fraction of Radix Paeoniae Alba. The major chemical constituents in the antidepressant fraction were identified by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and their proposed fragmentation pathways in MS spectra were deduced. A total of 79 chemical constituents were identified from BS-60E, including 36 monoterpenes, 34 polyphenols, 6 oligosaccharides, and 3 other constituents, and monoterpenes and polyphenols may be major effective constituents of BS-60E.

18.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296521

RESUMO

The purpose of this article is to present recent studies on the antimicrobial properties of linalool, the mechanism of action on cells and detoxification processes. The current trend of employing compounds present in essential oils to support antibiotic therapy is becoming increasingly popular. Naturally occurring monoterpene constituents of essential oils are undergoing detailed studies to understand their detailed effects on the human body, both independently and in doses correlated with currently used pharmaceuticals. One such compound is linalool, which is commonly found in many herbs and is used to flavor black tea. This compound is an excellent fragrance additive for cosmetics, enhancing the preservative effect of the formulations used in them or acting as an anti-inflammatory on mild skin lesions. Previous studies have shown that it is extremely important due to its broad spectrum of biological activities, i.e., antioxidant, anti-inflammatory, anticancer, cardioprotective and antimicrobial. Among opportunistic hospital strains, it is most active against Gram-negative bacteria. The mechanism of action of linalool against microorganisms is still under intensive investigation. One of the key aspects of linalool research is biotransformation, through which its susceptibility to detoxification processes is determined.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Humanos , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Monoterpenos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Chá , Preparações Farmacêuticas
19.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300641

RESUMO

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Assuntos
Plantas Medicinais , Voacanga , Plantas Medicinais/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , Sementes , Genoma de Planta
20.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956847

RESUMO

Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), ß-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, ß-pinene, and borneol were present primarily as (-)-enantiomers (100% enantiomeric excess (ee) for (-)-α-pinene and (-)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (-)-ß-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (-)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (-)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (-)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (-)-borneol as a novel modulator of human neutrophil function.


Assuntos
Grindelia , Óleos Voláteis , Canfanos , Grindelia/química , Humanos , Limoneno/análise , Neutrófilos , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA