Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357931

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , NAD , Feminino , Gravidez , Humanos , Camundongos , Animais , NAD/metabolismo , Niacinamida , Fenótipo , Metaboloma , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
2.
Acta Neuropathol ; 146(4): 565-583, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548694

RESUMO

Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-ß levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-ß and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Colina/farmacologia , Fator de Necrose Tumoral alfa , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Acetilcolina , Inflamação , Proteínas tau/metabolismo
3.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581939

RESUMO

The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.


Assuntos
Leptina , Obesidade , Camundongos , Animais , Leptina/genética , Leptina/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Hipotálamo/metabolismo , Camundongos Knockout , Neurônios GABAérgicos/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ingestão de Alimentos/genética
4.
Pharmacol Ther ; 247: 108440, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201739

RESUMO

The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/análise , Retina/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo
5.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092553

RESUMO

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Puberdade Precoce , Humanos , Feminino , Camundongos , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipotálamo/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982737

RESUMO

Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Tamoxifeno , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Animais , Camundongos , Modelos Animais de Doenças , Receptores de Estrogênio/genética , Tamoxifeno/farmacologia , Fenótipo , Imuno-Histoquímica , Citometria de Fluxo , Transcriptoma , Camundongos da Linhagem 129 , RNA-Seq , Células Epiteliais , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética
7.
Microbiol Spectr ; 10(5): e0269322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094219

RESUMO

The rise in infections caused by antibiotic-resistant bacteria is outpacing the development of new antibiotics. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of clinically important bacteria that have developed resistance to multiple antibiotics and are commonly referred to as multidrug resistant (MDR). The medical and research communities have recognized that, without new antimicrobials, infections by MDR bacteria will soon become a leading cause of morbidity and death. Therefore, there is an ever-growing need to expedite the development of novel antimicrobials to combat these infections. Toward this end, we set out to refine an existing mouse model of pulmonary Pseudomonas aeruginosa infection to generate a robust preclinical tool that can be used to rapidly and accurately predict novel antimicrobial efficacy. This refinement was achieved by characterizing the virulence of a panel of genetically diverse MDR P. aeruginosa strains in this model, by both 50% lethal dose (LD50) analysis and natural history studies. Further, we defined two antibiotic regimens (aztreonam and amikacin) that can be used as comparators during the future evaluation of novel antimicrobials, and we confirmed that the model can effectively differentiate between successful and unsuccessful treatments, as predicted by in vitro inhibitory data. This validated model represents an important tool in our arsenal to develop new therapies to combat MDR P. aeruginosa strains, with the ability to provide rapid preclinical evaluation of novel antimicrobials and support data from clinical studies during the investigational drug development process. IMPORTANCE The prevalence of antibiotic resistance among bacterial pathogens is a growing problem that necessitates the development of new antibiotics. Preclinical animal models are important tools to facilitate and speed the development of novel antimicrobials. Successful outcomes in animal models not only justify progression of new drugs into human clinical trials but also can support FDA decisions if clinical trial sizes are small due to a small population of infections with specific drug-resistant strains. However, in both cases the preclinical animal model needs to be well characterized and provide robust and reproducible data. Toward this goal, we have refined an existing mouse model to better predict the efficacy of novel antibiotics. This improved model provides an important tool to better predict the clinical success of new antibiotics.


Assuntos
Amicacina , Pseudomonas aeruginosa , Camundongos , Humanos , Animais , Amicacina/farmacologia , Aztreonam/farmacologia , Testes de Sensibilidade Microbiana , Drogas em Investigação/farmacologia , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
8.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099048

RESUMO

Normal-tension glaucoma (NTG) is a heterogeneous disease characterized by retinal ganglion cell (RGC) death leading to cupping of the optic nerve head and visual field loss at normal intraocular pressure (IOP). The pathogenesis of NTG remains unclear. Here, we describe a single nucleotide mutation in exon 2 of the methyltransferase-like 23 (METTL23) gene identified in 3 generations of a Japanese family with NTG. This mutation caused METTL23 mRNA aberrant splicing, which abolished normal protein production and altered subcellular localization. Mettl23-knock-in (Mettl23+/G and Mettl23G/G) and -knockout (Mettl23+/- and Mettl23-/-) mice developed a glaucoma phenotype without elevated IOP. METTL23 is a histone arginine methyltransferase expressed in murine and macaque RGCs. However, the novel mutation reduced METTL23 expression in RGCs of Mettl23G/G mice, which recapitulated both clinical and biological phenotypes. Moreover, our findings demonstrated that METTL23 catalyzed the dimethylation of H3R17 in the retina and was required for the transcription of pS2, an estrogen receptor α target gene that was critical for RGC homeostasis through the negative regulation of NF-κB-mediated TNF-α and IL-1ß feedback. These findings suggest an etiologic role of METTL23 in NTG with tissue-specific pathology.


Assuntos
Glaucoma , Histonas , Animais , Camundongos , Modelos Animais de Doenças , Glaucoma/metabolismo , Histonas/genética , Histonas/metabolismo , Pressão Intraocular/genética , Metilação , Mutação , Células Ganglionares da Retina/metabolismo
9.
J Fungi (Basel) ; 8(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736127

RESUMO

Pneumocystis is a fungal pathogen that can cause pneumonia in immunosuppressed hosts and subclinical infection in immunocompetent hosts. Mucosal-associated invariant T (MAIT) cells are unconventional lymphocytes with a semi-invariant T-cell receptor that are activated by riboflavin metabolites that are presented by the MHC-1b molecule MR1. Although Pneumocystis can presumably synthesize riboflavin metabolites based on whole-genome studies, the role of MAIT cells in controlling Pneumocystis infection is unknown. We used a co-housing mouse model of Pneumocystis infection, combined with flow cytometry and qPCR, to characterize the response of MAIT cells to infection in C57BL/6 mice, and, using MR1-/- mice, which lack MAIT cells, to examine their role in clearing the infection. MAIT cells accumulated in the lungs of C57BL/6 mice during Pneumocystis infection and remained at increased levels for many weeks after clearance of infection. In MR1-/- mice, Pneumocystis infection was cleared with kinetics similar to C57BL/6 mice. Thus, MAIT cells are not necessary for control of Pneumocystis infection, but the prolonged retention of these cells in the lungs following clearance of infection may allow a more rapid future response to other pathogens.

10.
Epigenomics ; 14(6): 303-308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35321550

RESUMO

In this interview, Professor Peter W Laird speaks with Storm Johnson, Commissioning Editor for Epigenomics, on his work to date in the field of cancer epigenetics. Dr Peter W Laird is a Professor at Van Andel Institute (VAI) in Grand Rapids, Michigan. He earned his B.S. and M.S., Cum Laude, from the University of Leiden, The Netherlands. He trained for his PhD with Dr Piet Borst, The Netherlands Cancer Institute, and as a postdoc with Dr Anton Berns, The Netherlands Cancer Institute, and with Dr Rudolf Jaenisch, at the Whitehead Institute for Biomedical Research in Cambridge, MA, USA. He joined the faculty at the University of Southern California in 1996, where he served as the Founding Director of the USC Epigenome Center and also as the Leader of the Epigenetics and Regulation Program of the Norris Comprehensive Cancer Center. In 2014, he relocated to VAI to join Dr Peter Jones in building an internationally acclaimed research center focused on Epigenetics. Dr Laird published the first demonstration of the causal role for DNA methylation in oncogenesis (Cell, 1995) [1]. He served as the Principal Investigator for all DNA methylation data production for the Cancer Genome Atlas (TCGA) and led many TCGA analysis efforts. He has been awarded 10 patents related to DNA methylation technology by the United States Patent and Trademark Office, one of which is the basis for the first US FDA-approved blood-based DNA methylation assay for cancer (Epi proColon). His research findings include the report of a close link between DNA methylation and BRAF mutation in colorectal cancer (Nature Genetics, 2006) [2], the discovery that embryonic stem cell polycomb repressor targets are predisposed to abnormal DNA methylation in cancer (Nature Genetics, 2007) [3], the identification of a novel epigenetic subtype of glioma (G-CIMP), tightly associated with IDH1 mutation (Cancer Cell, 2010) [4], and the connection between nuclear architecture, late replication, and domains of epigenetic instability (Nature Genetics, 2011) [5], later showing a link with mitotic cell division, thus providing a mechanistic explanation for the loss of DNA methylation in aging and cancer first described four decades ago (Nature Genetics, 2018) [6].


Assuntos
Epigenômica , Neoplasias , Metilação de DNA , Epigênese Genética , Epigenoma , Humanos , Masculino , Neoplasias/genética , Estados Unidos
11.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076027

RESUMO

Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.


Assuntos
Artrite , Fenômenos Fisiológicos Bacterianos/imunologia , Microbioma Gastrointestinal/fisiologia , Fosfolipases A2 do Grupo II/metabolismo , Metabolismo dos Lipídeos/imunologia , Animais , Animais Geneticamente Modificados , Artrite/imunologia , Artrite/microbiologia , Humanos , Fenômenos do Sistema Imunitário , Lipidômica/métodos , Camundongos , Modelos Animais , Patologia Molecular/métodos , Transgenes
12.
Am J Physiol Heart Circ Physiol ; 322(3): H359-H372, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995167

RESUMO

Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via two-dimensional (2-D) echocardiographic akinetic length and four-dimensional (4-D) echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2-D and 4-D echocardiography. Infarct size established via histology was compared with ultrasound-based metrics via linear regression analysis. Two-dimensional echocardiographic akinetic length (r = 0.76, P = 0.03), 4-D echocardiographic infarct volume (r = 0.85, P = 0.008), and surface area (r = 0.90, P = 0.002) correlate well with histology. Although both 2-D and 4-D echocardiography were reliable measurement techniques to assess infarct, 4-D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4-D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, P < 0.001, transmural thickness: r = 0.76, P = 0.001). Two-dimensional echocardiographic akinetic length, 4-D echocardiography ultrasound, and strain provide effective in vivo methods for measuring fibrotic scarring after MI.NEW & NOTEWORTHY Our study supports that both 2-D and 4-D echocardiographic analysis techniques are reliable in quantifying infarct size though 4-D ultrasound provides a more holistic image of LV function and structure, especially after myocardial infarction. Furthermore, 4-D strain analysis correctly identifies infarct size and regional LV dysfunction after MI. Therefore, these techniques can improve functional insight into the impact of pharmacological interventions on the pathophysiology of cardiac disease.


Assuntos
Infarto do Miocárdio/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , Animais , Débito Cardíaco , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Masculino , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Sensibilidade e Especificidade , Ultrassonografia/normas
13.
MAbs ; 14(1): 1993522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923896

RESUMO

A major impediment to successful use of therapeutic protein drugs is their ability to induce anti-drug antibodies (ADA) that can alter treatment efficacy and safety in a significant number of patients. To this aim, in silico, in vitro, and in vivo tools have been developed to assess sequence and other liabilities contributing to ADA development at different stages of the immune response. However, variability exists between similar assays developed by different investigators due to the complexity of assays, a degree of uncertainty about the underlying science, and their intended use. The impact of protocol variations on the outcome of the assays, i.e., on the immunogenicity risk assigned to a given drug candidate, cannot always be precisely assessed. Here, the Non-Clinical Immunogenicity Risk Assessment working group of the European Immunogenicity Platform (EIP) reviews currently used assays and protocols and discusses feasibility and next steps toward harmonization and standardization.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Medição de Risco
14.
Genesis ; 59(11): e23455, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34665506

RESUMO

Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.


Assuntos
Micronutrientes/metabolismo , Defeitos do Tubo Neural/metabolismo , Animais , Interação Gene-Ambiente , Humanos , Defeitos do Tubo Neural/genética
15.
BMC Complement Med Ther ; 21(1): 184, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210323

RESUMO

BACKGROUND: In order to find a new natural resource for pain-relief, the analgesic effects of Ilex dipyrena crude extract, fractions, and subfractions were evaluated in in-vivo mouse models with possible mechanism of action. METHODS: Analgesic effects of crude extract (100 and 200 mg/kg body weight), fractions and subfractions (75 mg/kg body weight) were screened using heat-induced (tail-immersion and hot plate test) and chemical-induced (formalin and acetic acid) nociception models in mice. The samples were also tested for the elucidation of a possible mechanism through opioidergic and GABAergic systems. RESULTS: The administration of crude extract, fractions and subfractions produced analgesic responses in acetic acid, formalin, tail immersion, and hot plate model for pain similar to those obtained with the standard. Naloxone antagonized the antinociceptive effects of the tested samples, whereas bicuculline showed partial inhibition. Considering the analgesic response, crude extract, fractions, and subfractions demonstrated promising inhibitory activity against all test models for pain, which was further supported by the possible involvement of opioidergic and GABAergic systems. CONCLUSION: The results suggest that this plant may be useful in the development of new analgesic drugs. Further research with regard to the isolation of bioactive compounds is required to verify these findings.


Assuntos
Analgésicos/farmacologia , Ilex , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Bicuculina/administração & dosagem , Antagonistas de Receptores de GABA-A/administração & dosagem , Camundongos Endogâmicos BALB C , Modelos Animais , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Testes de Toxicidade Aguda
16.
Animal Model Exp Med ; 4(2): 87-103, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34179717

RESUMO

Cancer is a major stress for public well-being and is the most dreadful disease. The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies. Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar. The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination. Therefore, vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion, progression, and early detection. These models give an insight into cancer etiology, molecular basis, host tumor interaction, the role of microenvironment, and tumor heterogeneity in tumor metastasis. These models are also used to predict novel cancer markers, targeted therapies, and are extremely helpful in drug development. In this review, the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted. Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and translational medicine. However, they promise a brighter future for cancer treatment.


Assuntos
Neoplasias , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Pesquisa Translacional Biomédica , Microambiente Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-33738461

RESUMO

Frailty is a condition marked by greater susceptibility to adverse outcomes, including disability and mortality, which affects up to 50% of those 80 years of age and older. Concurrently, serum vitamin D insufficiency and deficiency, for which as many as 70% of older adults may be at risk, potentially play an important role in frailty onset and progression. Large population driven studies have uncovered associations between low serum vitamin D levels and higher incidence of frailty. However, attempts to apply vitamin D therapeutically to treat and/or prevent frailty have not yielded consistent support for benefits. Given the complexity and inconsistency arising from human studies involving vitamin D, our research group has recently published on animal models of vitamin D insufficiency. Combining our model with the emerging development of animal frailty assessment, we identified that higher than standard levels of vitamin D supplementation may delay frailty in mice. In this viewpoint article, we will discuss current knowledge regarding the importance of vitamin D in frailty progression, the emerging significance of animal models in addressing these relationships, and the future for pre-clinical and clinical research.

18.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33735112

RESUMO

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Assuntos
Aminoglicosídeos/efeitos adversos , Cóclea/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Animais , Cóclea/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Gentamicinas/efeitos adversos , Gentamicinas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Fator de Transcrição Associado à Microftalmia/genética , Neomicina/efeitos adversos , Técnicas de Cultura de Órgãos , Ototoxicidade/etiologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33507880

RESUMO

Preterm birth increases the risk for pulmonary hypertension and heart failure in adulthood. Oxygen therapy can damage the immature cardiopulmonary system and may be partially responsible for the cardiovascular disease in adults born preterm. We previously showed that exposing newborn mice to hyperoxia causes pulmonary hypertension by 1 year of age that is preceded by a poorly understood loss of pulmonary vein cardiomyocyte proliferation. We now show that hyperoxia also reduces cardiomyocyte proliferation and survival in the left atrium and causes diastolic heart failure by disrupting its filling of the left ventricle. Transcriptomic profiling showed that neonatal hyperoxia permanently suppressed fatty acid synthase (Fasn), stearoyl-CoA desaturase 1 (Scd1), and other fatty acid synthesis genes in the atria of mice, the HL-1 line of mouse atrial cardiomyocytes, and left atrial tissue explanted from human infants. Suppressing Fasn or Scd1 reduced HL-1 cell proliferation and increased cell death, while overexpressing these genes maintained their expansion in hyperoxia, suggesting that oxygen directly inhibits atrial cardiomyocyte proliferation and survival by repressing Fasn and Scd1. Pharmacologic interventions that restore Fasn, Scd1, and other fatty acid synthesis genes in atrial cardiomyocytes may, thus, provide a way of ameliorating the adverse effects of supplemental oxygen on preterm infants.


Assuntos
Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Átrios do Coração/citologia , Miócitos Cardíacos/metabolismo , Oxigênio/efeitos adversos , Nascimento Prematuro , Estearoil-CoA Dessaturase/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular , Proliferação de Células , Modelos Animais de Doenças , Ácido Graxo Sintases/antagonistas & inibidores , Feminino , Átrios do Coração/patologia , Humanos , Hiperóxia , Recém-Nascido , Recém-Nascido Prematuro , Lipogênese , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Oxigênio/administração & dosagem , Terapia Respiratória , Estearoil-CoA Dessaturase/antagonistas & inibidores , Transcriptoma
20.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008430

RESUMO

Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.


Assuntos
Selênio/administração & dosagem , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animais , Dieta , Código Genético , Saúde , Humanos , RNA de Transferência Aminoácido-Específico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA