RESUMO
IMPORTANCE: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.
Assuntos
Cryptococcus neoformans , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Testes de Sensibilidade MicrobianaRESUMO
INTRODUCTION: Recurrent vulvovaginal candidiasis (RVVC) affects up to 9% of women worldwide. This amount is expected to increase due to lifestyle changes, increased fungal resistance and biofilm formation. Treatment options are limited and in 57% of the cases, relapses occur within 12 months after starting fluconazole therapy (golden standard). The pathogenesis of RVVC is multifactorial and includes fungal biology, the vaginal microenvironment and the immune system. Fluconazole is antimicrobial and effective in inducing short-term remission but a long-term cure is hard to achieve. Medical grade honey (MGH) has antimicrobial, protective, antioxidative and immunomodulatory activity and may therefore be a good alternative treatment. This study aims to investigate the clinical cure rate and long-term efficacy of MGH compared with fluconazole in patients with RVVC. METHODS AND ANALYSIS: This study is a multicentre, randomised controlled trial (Maastricht University Medical Centre+ and Zuyderland Medical Centre). A total of 252 eligible women will be randomly assigned to the fluconazole group (control) or the MGH group (L-Mesitran, treatment). The primary objective is to investigate the mycological cure rate after 1 month assessed through a vaginal culture. Secondary objectives are the clinical cure rate regarding symptoms, the prophylactic activity after 6 months of maintenance therapy and the number of relapses within 12 months. Moreover, information about side effects, discomfort and quality of life will be collected with the use of questionnaires. ETHICS AND DISSEMINATION: Ethical approval from the Medical Ethics Review Committee of the academic hospital Maastricht/University Maastricht has been obtained (NL 73974.068.21, V.7 on 8 February 2022). Additional approval was obtained from the Ethics Committee of the Zuyderland Medical Centre Heerlen (Z2021141 on 4 March 2022). The first patient was randomised on 22 August 2022. Results will be made available to researchers and healthcare professionals via conferences, meetings and peer-reviewed international publications. TRIAL REGISTRATION NUMBER: NCT05367089.
Assuntos
Candidíase Vulvovaginal , Mel , Humanos , Feminino , Fluconazol/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Qualidade de Vida , Recidiva Local de Neoplasia , Hospitais Universitários , Microambiente Tumoral , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
OBJECTIVES: This study aimed to determine the oral carriage prevalence of Candida species and identify factors associated with the carriage of Candida species among patients with cancer on treatment. DESIGN: A hospital-based cross-sectional study. SETTING: The study was conducted at a tertiary-level cancer hospital Ocean Road Cancer Institute (ORCI), Dar es Salaam, Tanzania. PARTICIPANTS: We enrolled 196 participants who consented to join the study. Oral swabs were collected from all participants and inoculated onto Sabouraud dextrose agar supplemented with 50 mg/mL gentamicin and 50 mg/mL chloramphenicol, and chromogenic agar for phenotypic identification of Candida species. PRIMARY OUTCOME: The study reported the high prevalence of oral carriage of Candida species among patients with cancer on treatment at the tertiary-level cancer hospital in Dar es Salaam, Tanzania. RESULTS: A total of 196 participants were enrolled in the study. The overall oral carriage of Candida species was 37.8% (74/196). The prevalence was higher among patients undergoing chemotherapy and radiotherapy (44.4%) than those in monotherapy (13.3% chemotherapy, 20% radiotherapy). Candida krusei was the most common isolated species, 48.6% (36/74). Head and neck (adjusted OR (aOR) 15.09, 95% CI 3.05 to 74.59, p=0.00), gastrointestinal (aOR 14.14, 95% CI 2.25 to 88.63, p=0.00) malignancies and diabetes (aOR 3.18, 95% CI 1.03 to 9.77, p=0.04) were factors independently associated with oral carriage of Candida species. CONCLUSION: The oral carriage of Candida species among patients with cancer receiving treatment at ORCI is high, mainly due to C. krusei species. This is alarming since C. krusei has intrinsic resistance to fluconazole, a common antifungal agent used to manage adult fungal infections. Therefore, efforts should be put into conducting regular check-ups for such opportunistic pathogens as they can lead to subsequent infections. Furthermore, studies conducted to determine the antifungal profile of the causative agents are warranted since different causative agents might have different profiles.
Assuntos
Antifúngicos , Neoplasias , Adulto , Humanos , Estudos Transversais , Tanzânia/epidemiologia , Ágar , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida , Neoplasias/tratamento farmacológico , Neoplasias/epidemiologia , Testes de Sensibilidade MicrobianaRESUMO
AIM: To evaluate the in vitro and in vivo antifungal capability of diverse compost teas of endemic Chilean flora inoculated with a consortium of fungal strains of Trichoderma spp. (biocontrol agent) against three important phytopathogens: Botrytis cinerea, Fusarium oxysporum, andLasiodiplodia theobromae. METHODS AND RESULTS: Compost teas were obtained from the endemic flora of Chile (Azara celastrina, Citronella mucronate, Cryptocarya alba, Peumus boldus, and Quillaja saponaria). Eleven Trichoderma strains were isolated, and antagonism tests were performed to develop fungal consortiums with biocontrol properties. The biocontrol effect of compost teas inoculated with Trichoderma consortia was also analyzed. The results showed that the teas possess antifungal activity against B. cinerea and F. oxysporum and, to a lower degree, against L. theobromae. In vitro tests showed that Trichoderma consortiums improved the suppressive effect against B. cinerea (94-97%), F. oxysporum (89-92%), and L. theobromae (51-73%). Peumus boldus tea showed the highest suppressive effect against the plant pathogen L. theobromae. In addition, the in vivo assay showed that tomato plants treated only with Trichoderma or compost tea did not show differences in height with regard to control plants. However, when these two treatments were combined, the best performance in plant height and protection against pathogens was observed. CONCLUSIONS: This study indicates that the addition of a consortium of Trichoderma strains with intra- and interspecific incompatibilities significantly improves the inhibitory effect of compost teas in in vitro tests against the plant pathogenic fungi, while in vivo it enhances tomato plant growth and reduces plant disease symptoms.
Assuntos
Compostagem , Fusarium , Trichoderma , Chile , Antifúngicos , Doenças das Plantas/microbiologia , CháRESUMO
In search of new anticancer agents, natural products including fungal compounds had been used as potential anticancer agents. The aim of this study was to investigate the anticancer activity of Morchella extracts against colon cancer cell line and UPLC-DAD-MS/MS analysis for the identification of compounds. The cytotoxic activity of the three Morchella species was examined for their anti-carcinogenic properties against the colon cancer cell lines. Phytochemical analyses were performed to screen Morchella for the presence of anti-cancerous compounds. All the fungal extracts inhibited the viability of colon cancer cells in a dose-dependent manner. Major compounds identified in Morchella included amino acid, fatty acid, sterol, flavonoid, peptide, glutamic acid, alkaloid, terpenoid, cyclopyrrolones, and coumarin. Several new compounds were detected among all the three Morchella extracts. In conclusion, all the fungal extracts showed potential inhibition of colon cancer cells and actively arrested the cell viability. It was concluded that the identified bioactive compounds might be the main constituents contributing to the anticancer activity of Morchella against human colon cancer cell lines. Thus, Morchella extracts are a potential source of bioactive compounds with cytotoxicity and could potentially be used as functional food supplements. Due to the nature of impressive findings, this investigation should be undertaken further to allow the studies to explore and develop a potential cytotoxic agents against colon cancer.
Assuntos
Antineoplásicos , Ascomicetos , Neoplasias do Colo , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Linhagem Celular , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias do Colo/tratamento farmacológicoRESUMO
Plants growing in metal-polluted sites can be a source of micro-organisms suitable for bio-assisted phytoremediation strategies. In this work, three endophytic fungi from the roots of Poa stuckertii and Poa pratensis, two grasses that naturally colonize a Lead-Zinc tailing storage facility in Southern Chile, were isolated and identified. The leachate of the tailing sands showed a Pb content of 1·36 ± 0·71 ppm, and a pH of 7·3. By amplifying the ITS1/ITS4 region of fungal ribosomal DNA, the isolates were identified as Bjerkandera sp., Microdochium sp. and Sarocladium sp. When the growth media was supplemented with 50 ppm of Pb at pH 4·5, Microdochium sp. showed an 80% decrease in the biomass, but the biomass production of Bjerkandera sp. and Sarocladium sp. was not affected by the same treatment. The accumulation of Pb in Microdochium sp. increased as a function of the concentration of the metal in the growth media, between 48·3 and 241·3 µmol l-1 . We showed that two Poaceae plants growing on a Lead-Zinc tailing storage facility are a source of endophyte fungi and that Pb had a differential effect on the growth of the isolated fungi independent of the plant of origin.
Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fungos/genética , Chumbo , Raízes de Plantas/microbiologia , Solo/química , Poluentes do Solo/análise , Zinco/análiseRESUMO
Attempts to bio-enrich fungal biomass with an essential trace elements to produce dietary supplements have some tradition and an example is selenium. Lithium salts have medical applications, but safer forms are sought after, and lithiated foods and food supplements may be an alternative. This study evaluated the lithiation of white Agaricus bisporus mushrooms using commercial compost fortified with LiNO3 and investigated the effects on co-accumulation of trace elements. The fortifications at levels of 1.0, 5.0, 10, 50 and 100 mg·kg-1 dw, resulted in corresponding median increases in mushroom Li concentrations of 0.74, 5.0, 7.4, 19 and 21 mg kg-1 dw, respectively, relative to 0.031 mg kg-1 dw in control mushrooms. The bio-concentration potential for Li uptake decreased at higher levels of fortification, with saturation occurring at 100 mg·kg-1, and the level of 500 mg kg-1 mycelium failed to produce mushrooms. The compost fortification resulted in up to several hundred-fold enrichment of mushrooms compared to those grown on control compost, underlining their potential therapeutic use. At higher fortification levels, some effects were seen on the co-accumulation of other elements, such as Ag (stems), As, Cd, Cr, Cs, Cu, Hg (stems), Mn, Rb, Sr, U (stems) and Zn; 0.05 < p < 0.10), but no effects were seen for Ag (caps), Al, Ba, Co, Hg (caps) Ni, Tl, U (caps), and V (p > 0.05).
Assuntos
Agaricus/química , Compostos de Lítio/química , Lítio/análise , Nitratos/química , Oligoelementos/análise , Agaricus/metabolismo , Lítio/metabolismo , Oligoelementos/metabolismoRESUMO
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Assuntos
Phytophthora infestans , Solanum tuberosum , Variações do Número de Cópias de DNA , Gerenciamento Clínico , Phytophthora infestans/genética , Melhoramento Vegetal , Doenças das PlantasRESUMO
Curcumin is one of the important natural compounds that is extracted from turmeric. This compound and its derivatives have numerous biological properties, including antioxidant, anticancer, anti-inflammatory, antimicrobial, and healing effects. Extensive research in various fields has been conducted on turmeric as it is widely used as a food additive. The significant antifungal activity is one of the major effects of curcumin. In this paper, recent studies on the effects of different forms of curcumin drug on the candidiasis were systematically examined and discussed. The data in this study were extracted from the articles and reports published in the Web of Science, Google Scholar, PubMed, and Scopus databases. After the preliminary investigation, relevant reports were selected and classified based on the incorporated formulation and purpose of the study. After a systematic discussion of the data, it was found that the use of medicinal forms based on nanoparticles can increase the absorption and target the controlled release of curcumin with a more effective role compared to other formulations. Consequently, it can be concluded that new methods of modern medicine can be employed to increase the efficacy of natural pharmaceutical compounds used in the past. In this regard, the present study analyzed the effect of curcumin against various Candida infections, using the recent data. It was found that applying a combination of drug formulation or the formulation of curcumin and its derivatives can be an effective strategy to overcome the medicine resistance in fungal infections, especially candidiasis.
Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Curcumina/farmacologia , Antifúngicos/uso terapêutico , Candidíase/microbiologia , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Farmacorresistência Fúngica , HumanosRESUMO
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fungos/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Vias Biossintéticas , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Floral extracts (FEs) can influence the infectivity and epidemiology of fruit infecting Colletotrichum species. In this study, Colletotrichum fioriniae responded to cranberry FEs with an increased rate and magnitude of secondary conidiation and appressorium formation. Four other cranberry fruit rotting species also showed an increased rate of germination in the presence of FEs. However, increased appressorium formation was observed only in the latent pathogens Coleophoma cylindrospora, Colletotrichum fructivorum, and Colletotrichum fioriniae. Two other fruit rotting species, Phyllosticta vaccinii and Allantophomopsis lycopodina, did not form appressoria while secondary conidiation was only seen with the Colletotrichum spp. When conidia of Colletotrichum fioriniae were inoculated in the presence of FE, the incidence of disease was greater on cranberry fruit. Conidia of this species also formed appressoria at lower than expected temperatures in the presence of FE. Dissection of the flowers revealed that the corolla (with stamens and stigma) was the most stimulatory part of the inflorescence. These observations suggest an important and ephemeral role of flowers in the epidemiology of fruit rot. Stimulatory floral signals were readily detected using a conidial germination bioassay and rainwater samples collected from the plant canopy throughout the growing season confirmed that bioactivity was highest during the bloom period, and declined as the fruit developed. The data presented show that floral signals can alter the growth patterns of a larger than previously observed range of fungi and the mobility of floral signals within the canopy implicates these phenology-specific cues in modifying the disease cycles of numerous plant pathogens.
Assuntos
Colletotrichum , Vaccinium macrocarpon , Flores , Frutas , Doenças das Plantas , Extratos VegetaisRESUMO
Fruit rots reduce coffee production worldwide. Eight Colletotrichum species have been reported to cause coffee fruit rots; the most important is C. kahawae, the cause of coffee berry disease (CBD) in Africa. It is unknown whether these fruit rot pathogens can be dispersed by the coffee berry borer (CBB, Hypothenemus hampei) or whether Beauveria bassiana (a natural enemy of CBB) might reduce coffee fruit rots. We identified pathogens causing coffee fruits rots in Puerto Rico and evaluated whether B. bassiana reduced fruit rot and whether CBB could disperse pathogens. A total of 2,333 coffee fruit with CBB damage were collected; of these, 1,197 had visible growth of B. bassiana. C. fructicola, C. siamense, C. theobromicola, and C. tropicale were isolated and identified from the fruit using morphological traits and phylogeny of three nuclear genes. All four species caused internal and external rot after inoculation of healthy green coffee fruit. Coffee fruit treated with B. bassiana had significantly less fruit rot than untreated fruit, suggesting B. bassiana can protect against fruit rot. To test whether B. bassiana had a protective effect, B. bassiana and Colletotrichum were coinoculated on coffee fruit. Fruit inoculated with both B. bassiana and Colletotrichum had significantly less rot than fruit inoculated with Colletotrichum alone. To test if CBBs dispersed the pathogens, CBBs were exposed to Colletotrichum conidia and placed on green fruit, which resulted in fruit rot. This study identifies new pathogens causing coffee fruit rot, shows that C. kahawae is not the only Colletotrichum that attacks green fruits, suggests a role for B. bassiana in disease management and demonstrates CBB can disperse the pathogens.
Assuntos
Beauveria , Coffea , África , Animais , Café , Frutas , Doenças das Plantas , Porto RicoRESUMO
Early blight (EB) and leaf blight are two destructive diseases of tomato in North Carolina (NC), caused by Alternaria linariae and A. alternata, respectively. During the last decade, EB caused by A. solani has increased in potato-producing areas in Wisconsin (WI). We collected 152 isolates of three Alternaria spp. associated with tomato and potato in NC and WI and used the gene genealogical approach to compare the genetic relationships among them. Two nuclear genes: the glyceraldehyde-3-phosphate dehydrogenase (GPDH), RNA polymerase second largest subunit (RPB2), and the rDNA internal transcribed spacer (ITS) region of these isolates were sequenced. Besides, sequences of the GPDH locus from international isolates described in previous studies were included for comparison purposes. A set of single nucleotide polymorphisms was assembled to identify locus-specific and species-specific haplotypes. Nucleotide diversity varied among gene sequences and species analyzed. For example, the estimates of nucleotide diversity and Watterson's theta were higher in A. alternata than in A. linariae and A. solani. There was little or no polymorphisms in the ITS sequences and thus restricted haplotype placement. The RPB2 sequences were less informative to detect haplotype diversity in A. linariae and A. solani, yet six haplotypes were detected in A. alternata. The GPDH sequences enabled strongly supported phylogenetic inferences with the highest haplotype diversity and belonged to five haplotypes (AaH1 to AaH5), which consisted of only A. alternata from NC. However, 13 haplotypes were identified within and among A. linariae and A. solani sequences. Among them, six (AsAlH1 to AsAlH6) were identical to previously reported haplotypes in global samples and the remaining were new haplotypes. The most divergent haplotypes were AaH1, AsAlH2/AsAlH3, and AsAlH4 and consisted exclusively of A. alternata, A. linariae, and A. solani, respectively. Neutrality tests suggested an excess of mutations and population expansion, and selection may play an important role in nucleotide diversity of Alternaria spp.
Assuntos
Solanum lycopersicum , Solanum tuberosum , Alternaria , Haplótipos , North Carolina , Nucleotídeos , Filogenia , Doenças das Plantas , WisconsinRESUMO
Cercospora beticola and Phoma betae are important pathogens of table beet, sugar beet, and Swiss chard (Beta vulgaris subsp. vulgaris), causing Cercospora leaf spot (CLS) and Phoma leaf spot, root rot, and damping-off, respectively. Both pathogens may be seedborne; however, limited evidence is available for seed infestation by C. beticola. Due to the limitations of culture-based seed assessment methods, detection of these pathogens was investigated using PCR. A P. betae-specific quantitative PCR assay was developed and used in conjunction with a C. beticola-specific assay to assess the presence of pathogen DNA in 12 table beet seed lots. DNA of C. beticola and P. betae was detected in four and eight seed lots, respectively. Plate tests and BIO-PCR confirmed the viability of each pathogen; however, competitive growth of other microbes and low incidence limited the frequency and sensitivity of detection in some seed lots. The results for P. betae support previously described infestation of seed. Further investigation of C. beticola-infested seed lots indicated the ability of seedborne C. beticola to cause CLS on plants grown from infested seed. Detection of viable C. beticola on table beet seed demonstrates the potential for pathogen dispersal and disease initiation via infested seed, and provides valuable insight into the epidemiology of CLS. Surveys of commercial table beet seed are required to determine the frequency and source of C. beticola seed infestation and its role as primary inoculum for epidemics, and to evaluate the effectiveness of seed treatments.
Assuntos
Ascomicetos , Beta vulgaris , Doenças das Plantas , Reação em Cadeia da Polimerase , SementesRESUMO
Nutrition is one of the factors that most limits forestry plant growth; thus, current production in nurseries is based on conventional fertilization focused on enhancing vigor. However, an excessive intake of mineral nitrogen can cause morphological imbalances and the formation of more succulent tissues which, consequently, increase susceptibility to plant pathogens. Fusarium circinatum is the causal agent of pitch canker in plants of the Pinus genus, with Pinus radiata being the species most susceptible to this disease. This study compares the response of P. radiata seedlings to infection by F. circinatum as influenced by two fertilizers-conventional and aerated compost tea (ACT)-applied during the nursery phase. The potential of ACT against F. circinatum was first tested in vitro, where it was found to inhibit the pathogen's mycelial growth and conidial germination. In the greenhouse, infected plants fertilized with ACT exhibited less severe internal and external symptoms of pitch canker and lower levels of pathogen colonization of both stems and needles than with conventional fertilizer. An analysis of the hormone content and defense-related gene expression shows greater salicylic acid production and phenylalanine ammonium-lyase and chalcone synthase expression in ACT-fertilized pine. All of the parameters assessed are consistent in showing that biofertilization with ACT reduces the susceptibility of pine seedlings to the disease compared with conventional fertilization.
Assuntos
Compostagem , Fusarium , Pinus , Doenças das Plantas , CháRESUMO
Fusarium head blight (FHB) is one of the most important cereal diseases worldwide, causing yield losses and contamination of harvested products with mycotoxins. Fusarium graminearum is one of the most common FHB-causing species in wheat and barley cropping systems. We assessed the ability of different botanical extracts to suppress essential stages of the fungal life cycle using three strains of F. graminearum (FG0410, FG2113, and FG1145). The botanicals included aqueous extracts from white mustard (Sinapis alba) seed flour (Pure Yellow Mustard [PYM] and Tillecur [Ti]) as well as milled Chinese galls (CG). At 2% concentration (wt/vol), PYM and Ti completely inhibited growth of mycelium of all F. graminearum strains whereas, at 1%, CG reduced the growth by 65 to 83%, depending on the strain. While PYM and Ti reduced the germination of both conidia and ascospores at 2% (wt/vol), CG was only effective in reducing conidia germination. Perithecia formation of FG0410 but not FG2113 was suppressed by all botanicals. Moreover, application of botanicals on mature perithecia led to a two- to fourfold reduction in discharge of ascospores. Using liquid chromatography (LC) with diode array detection, we quantified the principal glucosinolate component sinalbin of PYM and Ti. LC time-of-flight mass spectrometry was used to demonstrate that the bioactive matrix of CG contains different gallotannins as well as gallic and tannic acids. Possible antifungal mechanisms of the botanical matrices are discussed. The results of this study are promising and suggest that PYM, Ti, and CG should be explored further for efficacy at managing FHB.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Fusarium , Micotoxinas , Extratos Vegetais , Antifúngicos/química , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Esporos Fúngicos/efeitos dos fármacosRESUMO
Candida auris is an emerging drug-resistant yeast responsible for hospital outbreaks. This statement reviews the evidence regarding diagnosis, treatment and prevention of this organism and provides consensus recommendations for clinicians and microbiologists in Australia and New Zealand. C. auris has been isolated in over 30 countries (including Australia). Bloodstream infections are the most frequently reported infections. Infections have crude mortality of 30-60%. Acquisition is generally healthcare-associated and risks include underlying chronic disease, immunocompromise and presence of indwelling medical devices. C. auris may be misidentified by conventional phenotypic methods. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry or sequencing of the internal transcribed spacer regions and/or the D1/D2 regions of the 28S ribosomal DNA are therefore required for definitive laboratory identification. Antifungal drug resistance, particularly to fluconazole, is common, with variable resistance to amphotericin B and echinocandins. Echinocandins are currently recommended as first-line therapy for infection in adults and children ≥2 months of age. For neonates and infants <2 months of age, amphotericin B deoxycholate is recommended. Healthcare facilities with C. auris should implement a multimodal control response. Colonised or infected patients should be isolated in single rooms with Standard and Contact Precautions. Close contacts, patients transferred from facilities with endemic C. auris or admitted following stay in overseas healthcare institutions should be pre-emptively isolated and screened for colonisation. Composite swabs of the axilla and groin should be collected. Routine screening of healthcare workers and the environment is not recommended. Detergents and sporicidal disinfectants should be used for environmental decontamination.
Assuntos
Antifúngicos/uso terapêutico , Candida/isolamento & purificação , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candidíase/prevenção & controle , Fatores Etários , Austrália , Candida/efeitos dos fármacos , Candida/genética , Candidíase/mortalidade , Infecção Hospitalar/prevenção & controle , DNA Fúngico/genética , Transmissão de Doença Infecciosa/prevenção & controle , Farmacorresistência Fúngica , Fluconazol/uso terapêutico , Humanos , Controle de Infecções/métodos , Testes de Sensibilidade Microbiana , Nova Zelândia , Sociedades MédicasRESUMO
The emerging yeast Candida auris has disseminated worldwide. We report on 7 cases identified in Germany during 2015-2017. In 6 of these cases, C. auris was isolated from patients previously hospitalized abroad. Whole-genome sequencing and epidemiologic analyses revealed that all patients in Germany were infected with different strains.
Assuntos
Antifúngicos/uso terapêutico , Candida/isolamento & purificação , Candidíase/epidemiologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candidíase/microbiologia , Esquema de Medicação , Alemanha/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Viagem , Sequenciamento Completo do GenomaRESUMO
The obligate biotrophic chytrid species Synchytrium endobioticum is the causal agent of potato wart disease. Currently, 39 pathotypes have been described based on their interaction with a differential set of potato varieties. Wart resistance and pathotyping is performed using bioassays in which etiolated tuber sprouts are inoculated. Here, we describe an alternative method in which aboveground plant parts are inoculated. Susceptible plants produced typical wart symptoms in developing but not in fully expanded aboveground organs. Colonization of the host by S. endobioticum was verified by screening for resting spores by microscopy and by molecular techniques using TaqMan polymerase chain reaction and RNAseq analysis. When applied to resistant plants, none of these symptoms were detectable. Recognition of S. endobioticum pathotypes by differentially resistant potato varieties was identical in axillary buds and the tuber-based bioassays. This suggests that S. endobioticum resistance genes are expressed in both etiolated "belowground" sprouts and green aboveground organs. RNAseq analysis demonstrated that the symptomatic aboveground materials contain less contaminants compared with resting spores extracted from tuber-based assays. This reduced microbial contamination in the aboveground bioassay could be an important advantage to study this obligate biotrophic plant-pathogen interaction. Because wart resistance is active in both below- and aboveground organs, the aboveground bioassay can potentially speed up screening for S. endobioticum resistance in potato breeding programs because it omits the requirement for tuber formation. In addition, possibilities arise to express S. endobioticum effectors in potato leaves through agroinfiltration, thereby providing additional phenotyping tools for research and breeding. Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Assuntos
Quitridiomicetos , Doenças das Plantas/microbiologia , Solanum tuberosum , Verrugas , BioensaioRESUMO
Most plants form mutualistic associations with arbuscular mycorrhizal (AM) fungi that are ubiquitous in soils. Through this symbiosis, plants can withstand abiotic and biotic stresses. The underlying molecular mechanisms involved in mediating mycorrhiza-induced resistance against insects needs further research, and this is particularly true for potato (Solanum tuberosum L. (Solanales: Solanaceae)), which is the fourth most important crop worldwide. In this study, the tripartite interaction between potato, the AM fungus Rhizophagus irregularis (Glomerales: Glomeraceae), and cabbage looper (Trichoplusia ni Hübner) (Lepidoptera: Noctuidae) was examined to determine whether potato exhibits mycorrhiza-induced resistance against this insect. Plant growth, insect fitness, AM fungal colonization of roots, and transcript levels of defense-related genes were measured in shoots and roots after 5 and 8 d of herbivory on mycorrhizal and nonmycorrhizal plants. AM fungal colonization of roots did not have an effect on potato growth, but root colonization levels increased by herbivory. Larval weight gain was reduced after 8 d of feeding on mycorrhizal plants compared with nonmycorrhizal plants. Systemic upregulation of Allene Oxide Synthase 1 (AOS1), 12-Oxo-Phytodienoate Reductase 3 (OPR3) (jasmonic acid pathway), Protease Inhibitor Type I (PI-I) (anti-herbivore defense), and Phenylalanine Ammonia Lyase (PAL) transcripts (phenylpropanoid pathway) was found during the tripartite interaction. Together, these findings suggest that potato may exhibit mycorrhiza-induced resistance to cabbage looper by priming anti-herbivore defenses aboveground. This study illustrates how mycorrhizal potato responds to herbivory by a generalist-chewing insect and serves as the basis for future studies involving tripartite interactions with other pests.