Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Ann Hepatol ; 29(2): 101174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38579127

RESUMO

INTRODUCTION AND OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide and poses serious harm to human health. There is growing evidence suggesting that the administration of specific supplements or nutrients may slow NAFLD progression. Silymarin is a hepatoprotective extract of milk thistle, but its efficacy in NAFLD remains unclear. MATERIALS AND METHODS: Relevant studies were searched in PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrails.gov, and China National Knowledge Infrastructure and were screened according to the eligibility criteria. Data were analyzed using Revman 5.3. Continuous values and dichotomous values were pooled using the standard mean difference (SMD) and odds ratio (OR). Heterogeneity was evaluated using the Cochran's Q test (I2 statistic). A P<0.05 was considered statistically significant. RESULTS: A total of 26 randomized controlled trials involving 2,375 patients were included in this study. Administration of silymarin significantly reduced the levels of TC (SMD[95%CI]=-0.85[-1.23, -0.47]), TG (SMD[95%CI]=-0.62[-1.14, -0.10]), LDL-C (SMD[95%CI]=-0.81[-1.31, -0.31]), FI (SMD[95%CI]=-0.59[-0.91, -0.28]) and HOMA-IR (SMD[95%CI]=-0.37[-0.77, 0.04]), and increased the level of HDL-C (SMD[95%CI]=0.46[0.03, 0.89]). In addition, silymarin attenuated liver injury as indicated by the decreased levels of ALT (SMD[95%CI]=-12.39[-19.69, -5.08]) and AST (SMD[95% CI]=-10.97[-15.51, -6.43]). The levels of fatty liver index (SMD[95%CI]=-6.64[-10.59, -2.69]) and fatty liver score (SMD[95%CI]=-0.51[-0.69, -0.33]) were also decreased. Liver histology of the intervention group revealed significantly improved hepatic steatosis (OR[95%CI]=3.25[1.80, 5.87]). CONCLUSIONS: Silymarin can regulate energy metabolism, attenuate liver damage, and improve liver histology in NAFLD patients. However, the effects of silymarin will need to be confirmed by further research.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Silimarina , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Silimarina/efeitos adversos , Testes de Função Hepática , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Gynecol Endocrinol ; 40(1): 2341701, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622970

RESUMO

OBJECTIVE: To evaluate the effects of alpha lipoic acid (ALA) on hormonal and metabolic parameters in a group of overweight/obese Polycystic Ovary Syndrome (PCOS) patients. METHODS: This was a retrospective study in which thirty-two overweight/obese patients with PCOS (n = 32) not requiring hormonal treatment were selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of complementary treatment with ALA (400 mg/day). Hepatic Insulin Extraction (HIE) index was also calculated. RESULTS: ALA administration significantly improved insulin sensitivity and decreased ALT and AST plasma levels in all subjects, though no changes were observed on reproductive hormones. When PCOS patients were subdivided according to the presence or absence of familial diabetes background, the higher effects of ALA were observed in the former group that showed AST and ALT reduction and greater HIE index decrease. CONCLUSION: ALA administration improved insulin sensitivity in overweight/obese PCOS patients, especially in those with familial predisposition to diabetes. ALA administration improved both peripheral sensitivity to insulin and liver clearance of insulin. Such effects potentially decrease the risk of nonalcoholic fat liver disease and diabetes in PCOS patients.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Síndrome do Ovário Policístico , Ácido Tióctico , Feminino , Humanos , Insulina , Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Estudos Retrospectivos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
3.
Bioorg Chem ; 147: 107369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640721

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação , Polissacarídeos , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Polissacarídeos/farmacologia , Polissacarídeos/química , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antígeno 96 de Linfócito/antagonistas & inibidores , Antígeno 96 de Linfócito/metabolismo , Carthamus tinctorius/química , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
4.
Pharmacol Res ; 203: 107155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527697

RESUMO

Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuína 1 , Sirtuína 1/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
5.
Phytomedicine ; 128: 155505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547616

RESUMO

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Inibidores de PCSK9 , Animais , Humanos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo
6.
J Transl Med ; 22(1): 225, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429794

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS: This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS: Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION: This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.


Assuntos
Berberina , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Berberina/efeitos adversos , HDL-Colesterol , LDL-Colesterol , Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Resultado do Tratamento , Triglicerídeos
7.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474754

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Avaliação Pré-Clínica de Medicamentos , Inibidor Tecidual de Metaloproteinase-1 , Inflamação
8.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543036

RESUMO

Emerging evidence has demonstrated a strong correlation between vitamin D status and fatty liver disease. Aberrant hepatic fat infiltration contributes to oxidant overproduction, promoting metabolic dysfunction, and inflammatory responses. Vitamin D supplementation might be a good strategy for reducing hepatic lipid accumulation and inflammation in non-alcoholic fatty liver disease and its associated diseases. This study aimed to investigate the role of the most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), in hepatic fat accumulation and inflammation in palmitic acid (PA)-treated AML-12 hepatocytes. The results indicated that treatment with 1,25(OH)2D significantly decreased triglyceride contents, lipid peroxidation, and cellular damage. In addition, mRNA levels of apoptosis-associated speck-like CARD-domain protein (ASC), thioredoxin-interacting protein (TXNIP), NOD-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1ß (IL-1ß) involved in the NLRP3 inflammasome accompanied by caspase-1 activity and IL-1ß expression were significantly suppressed by 1,25(OH)2D in PA-treated hepatocytes. Moreover, upon PA exposure, 1,25(OH)2D-incubated AML-12 hepatocytes showed higher sirtulin 1 (SIRT1) expression and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. A SIRT1 inhibitor alleviated the beneficial effects of 1,25(OH)2D on PA-induced hepatic fat deposition, IL-1ß expression, and caspase-1 activity. These results suggest that the favorable effects of 1,25(OH)2D on hepatic fat accumulation and inflammation may be, at least in part, associated with the SIRT1.


Assuntos
Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Vitaminas/metabolismo , Ácido Palmítico/farmacologia , Caspases/metabolismo , Leucemia Mieloide Aguda/metabolismo
9.
J Ethnopharmacol ; 327: 118054, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484950

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Globally, the incidence rate and number of patients with nonalcoholic fatty liver disease are increasing, which has become one of the greatest threats to human health. However, there is still no effective therapy and medicine so far. Silphium perfoliatum L. is a perennial herb native to North America, which is used to improve physical fitness and treat liver and spleen related diseases in the traditional medicinal herbs of Indian tribes. This herb is rich in chlorogenic acids, which have the functions of reducing blood lipids, losing weight and protecting liver. However, the effect of these compounds on nonalcoholic fatty liver disease remains unclear. AIM OF THE STUDY: Clarify the therapeutic effects and mechanism of the extract (CY-10) rich in chlorogenic acid and its analogues from Silphium perfoliatum L. on non-alcoholic fatty liver disease, and to determine the active compounds. MATERIALS AND METHODS: A free fatty acid-induced steatosis model of HepG2 cells was established to evaluate the in vitro activity of CY-10 in promoting lipid metabolism. Further, a high-fat diet-induced NAFLD model in C57BL/6 mice was established to detect the effects of CY-10 on various physiological and biochemical indexes in mice, and to elucidate the in vivo effects of the extract on regulating lipid metabolism, anti-inflammation and hepatoprotection, and nontarget lipid metabolomics was performed to analyze differential metabolites of fatty acids in the liver. Subsequently, western blotting and immunohistochemistry were used to analyze the target of the extract and elucidate its mechanism of action. Finally, the active compounds in CY-10 were elucidated through in vitro activity screening. RESULTS: The results indicated that CY-10 significantly attenuated lipid droplet deposition in HepG2 cells. The results of in vivo experiments showed that CY-10 significantly reduce HFD-induced mouse body weight and organ index, improve biochemical indexes, oxidation levels and inflammatory responses in the liver and serum, thereby protecting the liver tissue. It can promote the metabolism of unsaturated fatty acids in the liver and reduce the generation of saturated fatty acids. Furthermore, it is clarified that CY-10 can promote lipid metabolism balance by regulating AMPK/FXR/SREPB-1c/PPAR-γ signal pathway. Ultimately, the main active compound was proved to be cryptochlorogenic acid, which has a strong promoting effect on the metabolism of fatty acids in cells. Impressively, the activities of CY-10 and cryptochlorogenic acid were stronger than simvastatin in vitro and in vivo. CONCLUSION: For the first time, it is clarified that the extract rich in chlorogenic acids and its analogues in Silphium perfoliatum L. have good therapeutic effects on non-alcoholic fatty liver disease. It is confirmed that cryptochlorogenic acid is the main active compound and has good potential for medicine.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Transdução de Sinais , Dieta Hiperlipídica
10.
Curr Issues Mol Biol ; 46(3): 2320-2342, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534764

RESUMO

Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.

11.
Endocrine ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519764

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD), is the main cause of chronic liver disease in children and adolescents. Indeed, epidemiological studies have shown that MASLD affects up to 40% of children with obesity. Despite the recent approval of medications that target weight loss in adolescents that could have benefits on pediatric MASLD, lifestyle interventions, such as diet and exercise, remain the mainstay of our therapeutic approach. More specifically, studies on diet alone have focused on the possible role of carbohydrate or fat restriction, albeit without a definite answer on the best approach. Weight loss after dietary intervention in children with obesity and MASLD has a beneficial effect, regardless of the diet used. In relation to the role of exercise in MASLD reversal, indirect evidence comes from studies showing that a sedentary lifestyle leading to poor fitness, and low muscle mass is associated with MASLD. However, research on the direct effect of exercise on MASLD in children is scarce. A combination of diet and exercise seems to be beneficial with several studies showing improvement in surrogate markers of MASLD, such as serum alanine aminotransferase and hepatic fat fraction, the latter evaluated with imaging studies. Several dietary supplements, such as vitamin E, probiotics, and omega-3 fatty acid supplements have also been studied in children and adolescents with MASLD, but with equivocal results. This review aims to critically present available data on the effects of lifestyle interventions, including diet, exercise, and dietary supplements, on pediatric MASLD, thus suggesting a frame for future research that could enhance our knowledge on pediatric MASLD management and optimize clinicians' approach to this vexing medical condition.

12.
Phytomedicine ; 125: 155299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301301

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NAFLD treatment. Diosgenin as the structural analogue of cholesterol attenuates hypercholesterolemia by inhibiting cholesterol metabolism, which is an important pathogenesis in NAFLD progression. However, there has been no few report concerning its effects on NAFLD so far. METHODS: Using a high-fat diet & 10% fructose-feeding mice, we evaluated the anti-NAFLD effects of diosgenin. Transcriptome sequencing, LC/MS analysis, molecular docking simulation, molecular dynamics simulations and Luci fluorescent reporter gene analysis were used to evaluate pathways related to cholesterol metabolism. RESULTS: Diosgenin treatment ameliorated hepatic dysfunction and inhibited NAFLD formation including lipid accumulation, inflammation aggregation and fibrosis formation through regulating cholesterol metabolism. For the first time, diosgenin was structurally similar to cholesterol, down-regulated expression of CYP7A1 and regulated cholesterol metabolism in the liver (p < 0.01) and further affecting bile acids like CDCA, CA and TCA in the liver and feces. Besides, diosgenin decreased expression of NPC1L1 and suppressed cholesterol transport (p < 0.05). Molecular docking and molecular dynamics further proved that diosgenin was more strongly bound to CYP7A1. Luci fluorescent reporter gene analysis revealed that diosgenin concentration-dependently inhibited the enzymes activity of CYP7A1. CONCLUSION: Our findings demonstrated that diosgenin was identified as a specific regulator of cholesterol metabolism, which pave way for the design of novel clinical therapeutic strategies.


Assuntos
Diosgenina , Hipercolesterolemia , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Diosgenina/farmacologia , Diosgenina/metabolismo , Simulação de Acoplamento Molecular , Fígado , Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos
13.
Bioorg Chem ; 145: 107165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367427

RESUMO

Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.


Assuntos
Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Lactobacillus acidophilus/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lipídeos
14.
Phytomedicine ; 126: 155437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394735

RESUMO

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Rutina/farmacologia , Células HeLa , RNA Ribossômico 16S , Fígado , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL
15.
Food Sci Nutr ; 12(2): 1279-1289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370063

RESUMO

Myo-inositol (MI) is a carbocyclic sugar polyalcohol. MI has known to exert anti-inflammatory, anti-oxidant, and anti-diabetic activities. This study aimed to investigate the effects of MI supplementation on oxidative stress biomarkers in obese patients with non-alcoholic fatty liver disease (NAFLD). In this double-blinded placebo-controlled randomized clinical trial, 51 newly diagnosed obese patients with NAFLD were randomly assigned to receive either MI (4 g/day) or placebo supplements accompanied by dietary recommendations for 8 weeks. Oxidative stress biomarkers, nutritional status, as well as liver enzymes and obesity indices were assessed pre- and post-intervention. A total of 48 patients completed the trial. Although anthropometric measures and obesity indices decreased significantly in both groups, the between-group differences adjusted for confounders were non-significant for these parameters, except for weight (p = .049); greater decrease was observed in the MI group. Iron and zinc intakes decreased significantly in both groups; however, between-group differences were non-significant at the end of the study. No significant between-group differences were revealed for other antioxidant micronutrients at the study endpoint. Sense of hunger, feeling to eat, desire to eat sweet and fatty foods reduced significantly in both groups (p < .05), while the feeling of satiety increased significantly in the placebo group (p = .002). No significant between-group differences were observed for these parameters, except for desire to eat fatty foods; a greater decrease was observed in the MI group (p = .034). Serum levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD) significantly increased in both study groups (p < .05); however, the between-group differences were non-significant at the end of the study. Furthermore, the between-group differences were non-significant for other oxidative stress biomarkers, except for serum nitric oxide (NO) level; a greater decrease was observed in the MI group. MI supplementation could significantly improve weight, desire to eat fatty foods, serum levels of NO, as well as the aspartate aminotransferase (AST)/ALT ratio.

16.
BMC Complement Med Ther ; 24(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216941

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS: The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS: The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS: The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases , RNA/efeitos adversos , Chaperona BiP do Retículo Endoplasmático , NF-kappa B , Retículo Endoplasmático/metabolismo , Fatores Ativadores da Transcrição/farmacologia , Estresse do Retículo Endoplasmático , Comprimidos/efeitos adversos , Fator 6 Ativador da Transcrição/farmacologia
17.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256905

RESUMO

This study aims to evaluate the hepatoprotective, hypolipidemic and aortic morphometric effects of fish oil rich in omega-3 in hypercholesterolemic BALB/c mice. This is an experimental model that included 16 male BALB/c mice (Mus musculus) divided into three groups (G1 (standard commercial chow and 0.9% saline solution), G2 (hypercholesterolemic diet and 0.9% saline solution) and G3 (hypercholesterolemic diet and fish oil)) for 8 weeks. There was no significant difference in the treatment with omega-3-rich fish oil in the lipid profile (p > 0.05). In the histological analysis, group G2 detected the presence of hepatitis and liver tissue necrosis, but this was not observed in group G3. As for the morphometry in the light area of the vessel, the G1 group had a higher score (2.62 ± 0.36 mm2) when compared to G2 (2.10 ± 0.16 mm2) and G3 (2.26 ± 0.25 mm2) (p < 0.05). The vessel wall thickness did not differ between the groups (p > 0.05). It is concluded that supplementation with fish oil rich in omega-3 carried out in this study may have a protective effect on liver tissue, but it has not yet improved the lipid and morphometric profile. Despite this research being preliminary, it is a relevant study with future prospects for improving the doses of EPA and DHA in order to better elucidate the benefits of fish oil in models of dyslipidemia.

18.
Ecotoxicol Environ Saf ; 272: 115850, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290310

RESUMO

Polystyrene microplastics (MPs) are persistent environmental pollutants commonly encountered in daily human life. Numerous studies have demonstrated their ability to induce liver damage, including oxidative stress, inflammation, and lipid accumulation. However, limited information exists regarding preventive measures against this issue. In our study, we investigated the potential preventive role of selenium nanoparticles (YC-3-SeNPs) derived from Yak-derived Bacillus cereus, a novel nanobiomaterial known for its antioxidant properties and lipid metabolism regulation. Using transcriptomic and metabolomic analyses, we identified key genes and metabolites associated with oxidative stress and lipid metabolism imbalance induced by MPs. Upregulated genes (Scd1, Fasn, Irs2, and Lpin) and elevated levels of arachidonic and palmitic acid accumulation were observed in MP-exposed mice, but not in those exposed to SeNPs. Further experiments confirmed that SeNPs significantly attenuated liver lipid accumulation and degeneration caused by MPs. Histological results and pathway screening validated our findings, revealing that MPs suppressed the Pparα pathway and Nrf2 pathway, whereas SeNPs activated both pathways. These findings suggest that MPs may contribute to the development of nonalcoholic fatty liver disease (NAFLD), while SeNPs hold promise as a future nanobio-product for its prevention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Selênio , Camundongos , Humanos , Animais , Selênio/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Plásticos , Microplásticos/toxicidade , Estresse Oxidativo , Lipídeos
19.
Phytother Res ; 38(1): 280-304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871899

RESUMO

This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-ß, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Via de Sinalização Wnt , Dieta
20.
Phytomedicine ; 123: 155183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992491

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Shenge Formula (SGF) is a traditional Chinese medicine that has been used in the clinical treatment of NAFLD, and its therapeutic potential in patients and NAFLD animal models has been demonstrated in numerous studies. However, its underlying mechanism for treating NAFLD remains unclear. PURPOSE: The aim of this study was to investigate the mechanism of SGF in the treatment of NAFLD using the proteomics strategy. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the main components of SGF. A mouse model of nonalcoholic fatty liver disease was constructed by feeding mice with a high-fat diet for 16 weeks. SGF was administered for an additional 8 weeks, and metformin was used as a positive control. Liver sections were subjected to histopathological assessments. LC-MS/MS was used for the label-free quantitative proteomic analysis of liver tissues. Candidate proteins and pathways were validated both in vivo and in vitro through qRT-PCR, western blot, and immunohistochemistry. The functions of the validated pathways were further investigated using the inhibition strategy. RESULTS: Thirty-nine ingredients were identified in SGF extracts, which were considered to be key compounds in the treatment of NAFLD. SGF administration attenuated obesity and fatty liver by reducing the body weight and liver weight in HFD-fed mice. It also relieved HFD-induced insulin resistance. More importantly, hepatic steatosis was significantly attenuated by SGF administration both in vivo and in vitro. Proteomic profiling of mouse liver tissues identified 184 differential expressed proteins (DEPs) associated with SGF treatment. Bioinformatic analysis of DEPs revealed that regulating the lipid metabolism and energy consumption process of hepatocytes was the main role of SGF in NAFLD treatment. This also indicated that ACOX1 might be the potential target of SGF, which was subsequently verified both in vitro and in vivo. The results demonstrated that SGF inhibited ACOX1 activity, thereby activating PPARα and upregulating CPT1A expression. Increased CPT1A expression promoted mitochondrial ß-oxidation, leading to reduced lipid accumulation in hepatocytes. CONCLUSIONS: Overall, our findings confirmed the protective effect of SGF against NAFLD and revealed the underlying molecular mechanism of regulating lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Fígado , Metabolismo dos Lipídeos , Obesidade/complicações , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA