Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 265(Pt 1): 130765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462119

RESUMO

Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Óleos Voláteis/farmacologia , Antioxidantes/farmacologia , Indústria de Processamento de Alimentos , Embalagem de Alimentos/métodos , Biopolímeros , Polímeros , Indústria Alimentícia
3.
Int J Biol Macromol ; 264(Pt 1): 130626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453123

RESUMO

Silver-Carrageenan (Ag/Carr) nanocomposite film for food packing application by the green method using Argemone albiflora leaf extract has been developed in this study. Different plant parts of Argemone albiflora (blue stem prickly poppy) are used all over the world for the treatment of microbial infections, jaundice, skin diseases etc. GC-MS analysis was used to examine the phytochemical found in the Argemone albiflora leaf extract which reduces the metal ions to nanoscale. The biopolymer employed in the synthesis of nanocomposite film was carrageenan, a natural carbohydrate (polysaccharide) extracted from edible red seaweeds. We developed a food packing that is biodegradable, eco-friendly, economical and free from harmful chemicals. These films possess better UV barrier and mechanical and antimicrobial properties with 1 mM AgNO3 solution. The presence of silver nanoparticles in the carrageenan matrix was evident from FESEM. The mechanical properties were analysed by a Universal testing machine (UTM) and different properties like water vapour permeability (WVP), moisture content (MC) and total soluble matter (TSM) important for food packing applications were also analysed. The antimicrobial properties of the synthesized film samples were studied against E. coli and S. aureus pathogenic bacteria. These films were employed for the storage of cottage cheese (dairy product) and strawberries (fruit). This packing increased the shelf life of the packed food effectively. Ag/Carr films are biodegradable within four weeks.


Assuntos
Anti-Infecciosos , Argemone , Nanopartículas Metálicas , Nanocompostos , Carragenina/química , Prata/química , Embalagem de Alimentos , Nanopartículas Metálicas/química , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanocompostos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química
4.
BMC Microbiol ; 24(1): 78, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459502

RESUMO

BACKGROUND AND OBJECTIVES: Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY: The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS: The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION: The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.


Assuntos
Anti-Infecciosos , Cladosporium , Nanopartículas Metálicas , Nanocompostos , Selênio , Humanos , Prata/farmacologia , Prata/química , Selênio/farmacologia , Amido/química , Peróxido de Hidrogênio/farmacologia , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
5.
J Drug Target ; 32(4): 444-455, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38445558

RESUMO

In this study, a novel selenium@zeolitic imidazolate framework core/shell nanocomposite stabilised with alginate was used to improve the anti-tumour activity of curcumin. The developed alginate-stabilised curcumin-loaded selenium@zeolitic imidazolate framework (Alg@Cur@Se@ZIF-8) had a mean diameter of 159.6 nm and polydispersity index < 0.25. The release of curcumin from the nanocarrier at pH 5.4 was 2.69 folds as high as at pH 7.4. The bare nanoparticles showed haemolytic activity of about 12.16% at a concentration of 500 µg/mL while covering their surface with alginate reduced this value to 5.2%. By investigating cell viability, it was found that Alg@Cur@Se@ZIF-8 caused more cell death than pure curcumin. Additionally, in vivo studies showed that Alg@Cur@Se@ZIF-8 dramatically reduced tumour growth compared to free curcumin in 4T1 tumour-bearing mice. More importantly, the histological study confirmed that the developed drug delivery system successfully inhibited lung and liver metastasis while causing negligible toxicity in vital organs. Overall, due to the excellent inhibitory activity on cancerous cell lines and tumour-bearing animals, Alg@Cur@Se@ZIF-8 can be considered promising for breast cancer therapy.


Assuntos
Curcumina , Nanocompostos , Nanopartículas , Neoplasias , Selênio , Camundongos , Animais , Portadores de Fármacos , Alginatos , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio
6.
Sci Rep ; 14(1): 4640, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409209

RESUMO

Slow-release fertilizers (SRFs) play an essential and necessary role in sustainable agriculture. Using slow-release and environment friendly fertilizers can increase the growth of plants and reduce the loss of nutrients. Considering the deficiency of iron (Fe) and zinc (Zn) in calcareous soils, a slow-release fertilizer was prepared based on the polymeric nanocomposite, which contains NPK, Fe, and Zn. Its potential was evaluated on tomato plant growth by conducting an experiment in a factorial completely randomized design with three replications. Two levels of salinity (2 and 5 ds m-1, two types of soil texture) clay loam and sandy loam) and five levels of fertilizers were examined in the experiment. To this, the graphene oxide-chitosan coated-humic acid@Fe3O4 nanoparticles (Fe3O4@HA@GO-Cs), and the graphene oxide-chitosan coated-ammonium zinc phosphate (AZP@GO-Cs) were used as Fe and Zn sources, respectively. Then, the optimal Fe and Zn fertilizers in the presence of urea, phosphorus, and potassium slow- release fertilizers (SRF) were investigated under greenhouse conditions. The results indicated that the best improvement in growth and nutrient uptake in plants was achieved by using the SRF. Notably, in the shoots of tomato plants, the nitrogen, phosphorus, potassium, Fe, and Zn concentration increased by 44, 66, 46, 75, and 74% compared to the control. The use of nanofertilizer can be an effective, biocompatible, and economical option to provide Fe and Zn demand in plants.


Assuntos
Quitosana , Grafite , Fosfatos , Solanum lycopersicum , Zinco/análise , Fertilizantes/análise , Fósforo , Plantas , Potássio , Solo , Nitrogênio
7.
Environ Sci Pollut Res Int ; 31(14): 21370-21379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388980

RESUMO

In this article, we present the synthesis of binary CdAl4O7/CdO nanocomposites using green tea extracts and green chemistry methods for high-performance hydrogen storage. The green tea extract contains bioactive compounds (polyphenols) that act as reducing agents, which facilitate the reaction between metal ions and water. By examining the structural and morphological characteristics of the obtained substrates using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), it was demonstrated that the nanocomposites were successfully synthesized. We evaluated the electrochemical performance of the synthesized CdAl4O7/CdO nanocomposites using a three-electrode chronopotentiometry system. According to the results, the synthesized nanocomposites are capable of storing 1750 mAh/g of hydrogen at a constant current of 1 Amp. By using green tea extract as a natural structure-directing agent, the CdAl4O7/CdO nanocomposite can be developed more sustainably as high-performance hydrogen storage materials. Ultimately, this work contributes to the advancement of sustainable energy storage through the synthesis of a promising new material.


Assuntos
Hidrogênio , Nanocompostos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Difração de Raios X , Chá/química
8.
Int J Biol Macromol ; 261(Pt 2): 129882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309405

RESUMO

This research investigates the application of an innovative bio-nanocomposite, Fenugreek seed mucilage/silicon carbide (FSM/SiC), as an exceptionally effective adsorbent for eliminating cadmium ions from aqueous solutions. Optimization of fenugreek mucilage extraction involved ultrasonic methods, establishing ideal conditions with a solid-to-solvent ratio of 1:55, 50 °C temperature, 37 kHz frequency, 100 % power, and 30 min processing time. Comprehensive characterization through FTIR spectroscopy, XRD, imaging, DLS, and SEM confirmed the preservation of crucial adsorption-related characteristics. Enhanced adsorption efficiency was achieved by systematically adjusting pH, temperature, adsorbent concentration, pollutant concentration, and contact time, identifying optimal conditions at pH 6, 0.03 g adsorbent dosage, 35 min contact time, and 30 mg/L initial cadmium concentration at 30 °C. Adsorption kinetics followed a pseudo-second-order model, while the Langmuir isotherm fit suggested monolayered adsorption. Thermodynamic analysis indicated exothermic and spontaneous Cd2+ ion adsorption onto FSM/SiC. Remarkably, FSM/SiC demonstrated exceptional regeneration potential, positioning it as a promising solution for water decontamination and environmental remediation. This research showcases FSM/SiC's potential with a maximum adsorption capacity of 41.6 mg/g for cadmium ions, highlighting its significance in addressing cadmium contamination.


Assuntos
Nanocompostos , Extratos Vegetais , Trigonella , Poluentes Químicos da Água , Cádmio/química , Termodinâmica , Água/química , Íons , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
9.
J Pharm Biomed Anal ; 241: 115942, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290190

RESUMO

In the present study, a simple, innovative, and economically beneficial method has been proposed for the synthesis of Ag@Ag2O core-shell nanocomposites using Acanthophora muscoides algae extract. The host-guest recognition of targets was performed by modification of the Ag@Ag2O surface using ß-CD. The Ag@Ag2O- ß-CD NCs were used as a colorimetric sensor to determine L-Tryptophan and L-Tyrosine using a partial least square (PLS) approach. A crystalline hybrid structure of Ag core and an Ag2O shell was confirmed by XRD, FTIR, TEM and AFM research. Also, DLS analysis and surface zeta potential spectra illustrated the aggregated nature of nanocomposites in the presence of analytes. The literature review shows that the colorimetric simultaneous determination of L-Tryptophan (L-Try) and L-Tyrosine (L-Tyr) has not been reported. The Ag@Ag2O- ß-CD sensor exhibited outstanding sensing capability in a broad linear range of 2.0 -200 µM for both amino acids and low detection limit of 0.32 and 0.51 µM, for L-Try and L-Tyr, respectively. The good sensitivity and excellent selectivity regarding possible interfering species, originated from the synergistic effect of host-guest recognition in combination with colorimetric sensing. Additionally, determination of analytes in various pharmaceutical, supplement and urine samples, approved the practical applicability of the constructed sensor. The computed results confirmed that colorimetric sensing in conjunction with a PLS technique was appropriate for the precise and accurate simultaneous determination of target amino acids in complex mixtures with RMSEP less than 2.5% and recovery in the range of 103-108% with R.S.D. values less than 3%.


Assuntos
Nanocompostos , Triptofano , Triptofano/análise , Tirosina , Colorimetria , Nanocompostos/química , Preparações Farmacêuticas
10.
Bioprocess Biosyst Eng ; 47(1): 75-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081951

RESUMO

A significant waste (e.g., high oil content and pollutants such as heavy metals, dyes, and microbial contaminants) in water is generated during crude oil extraction and industrial processes, which poses environmental challenges. This study explores the potential of Ag@Fe3O4 nanocomposite (NC) biosynthesized using the aqueous leaf extract of Laurus nobilis for the treatment of oily wastewater. The NC was characterized using ultraviolet-visible (UV-Vis) spectrophotometry, Scanning Electron Microscopy (SEM), Fourier Transformed Infrared (FTIR) and X-Ray Diffraction (XRD) spectroscopies. The crystalline structure of the NC was determined to be face-centered cubic with an average size of 42 nm. Ag@Fe3O4 NC exhibited significant degradation (96.8%, 90.1%, and 93.8%) of Rose Bengal (RB), Methylene Blue (MB), and Toluidine Blue (TB), respectively, through a reduction reaction lasting 120 min at a dye concentration of 10 mg/L. The observed reaction kinetics followed a pseudo-first-order model, with rate constants (k-values) of 0.0284 min-1, 0.0189 min-1, and 0.0212 min-1 for RB, MB, and TB, respectively. The fast degradation rate can be attributed to the low band gap (1.9 eV) of Ag@Fe3O4 NC. The NC elicited an impressive effectiveness (99-100%, 98.0%, and 91.8% within 30 min) in removing, under sunlight irradiation, several heavy metals, total petroleum hydrocarbons (TPH), and total suspended solids (TSS) from the oily water samples. Furthermore, Ag@Fe3O4 NC displayed potent antibacterial properties and a good biocompatibility. These findings contribute to the development of efficient and cost-effective methods for wastewater treatment and environmental remediation.


Assuntos
Metais Pesados , Nanocompostos , Águas Residuárias , Fotólise , Antibacterianos/farmacologia , Antibacterianos/química , Água , Corantes/química , Nanocompostos/química , Catálise
11.
Int J Biol Macromol ; 256(Pt 1): 128041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979768

RESUMO

Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both. Hence, in this work, various bio-epoxy resins, which have the proper potential for application as a matrix, are completely introduced with the synthesis viewpoint, and their characterized chemical structures are drawn. In the next steps, the bio-epoxy nanocomposites are classified based on the used nanomaterials, which are carbon nanoparticles (carbon nanotubes, graphene nanoplatelets, graphene oxide, reduced graphene oxide, etc.), nano-silica (mesoporous and spherical), cellulose (nanofibers and whiskers), nanoclay and so on. Also, the features of these bio-nanocomposites and their applications are introduced. This review study can be a proper guide for developing a new type of green nanocomposites in the near future.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Lignina , Borracha , Polifenóis , Resinas Epóxi/química , Nanotubos de Carbono/química , Polímeros , Nanocompostos/química , Óleos de Plantas
12.
Int J Biol Macromol ; 254(Pt 1): 127733, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918591

RESUMO

In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.


Assuntos
Linho , Nanocompostos , Óleos Voláteis , Origanum , Zeína , Celulose/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zeína/química , Óleo de Semente do Linho , Polissacarídeos , Nanocompostos/química
13.
Int J Biol Macromol ; 254(Pt 2): 127805, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918600

RESUMO

In this work, an over-the-counter commercial dye, containing direct blue 151 in its composition, which is also discarded without any environmental regulation, was efficiency photodegraded using a green chemistry-synthesized nanocomposites type silver nanoparticles (AgNPs) supported on pistachio husk (PH). The green synthesis (GS) of the nanocomposites was carried out using the Anemopsis californica leaf extract (ExAc) as a reducing-stabilizing agent (AgNPs/ExAc-PH), for the first time. The presence of AgNPs on the nanocomposite surface was corroborated by field emission transmission electron microscope (FE-TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The synthesized AgNPs/ExAc-PH has a bimodal size of 24 and 25 nm (4.86 % each) and a 0.72 % of AgNPs on its surface. AgNPs were adhered to the PH surface, through secondary bonds between the Ag and the cellulose of the PH. The optimum conditions, for efficient photocatalytic degradation, were 5 mg of nanocomposite, 3.18 × 10-2 M of NaBH4, natural sunlight, and stirring; this results in a photodegradation efficiency of 100 % almost instantaneously. Furthermore, it was shown that the dye degradation process is primarily due to the photocatalytic degradation of the dye, which occurs almost instantaneously.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Pistacia , Prata/química , Compostos Azo , Celulose , Nanopartículas Metálicas/química , Substâncias Redutoras , Nanocompostos/química , Extratos Vegetais/química , Antibacterianos/química
14.
Gels ; 9(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38131909

RESUMO

Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.

15.
Int J Nanomedicine ; 18: 7661-7676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111844

RESUMO

Background: Volumetric Muscle Loss (VML) denotes the traumatic loss of skeletal muscle, a condition that can result in chronic functional impairment and even disability. While the body can naturally repair injured skeletal muscle within a limited scope, patients experiencing local and severe muscle loss due to VML surpass the compensatory capacity of the muscle itself. Currently, clinical treatments for VML are constrained and demonstrate minimal efficacy. Selenium, a recognized antioxidant, plays a crucial role in regulating cell differentiation, anti-inflammatory responses, and various other physiological functions. Methods: We engineered a porous Se@SiO2 nanocomposite (SeNPs) with the purpose of releasing selenium continuously and gradually. This nanocomposite was subsequently combined with a decellularized extracellular matrix (dECM) to explore their collaborative protective and stimulatory effects on the myogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The influence of dECM and NPs on the myogenic level, reactive oxygen species (ROS) production, and mitochondrial respiratory chain (MRC) activity of ADSCs was evaluated using Western Blot, ELISA, and Immunofluorescence assay. Results: Our findings demonstrate that the concurrent application of SeNPs and dECM effectively mitigates the apoptosis and intracellular ROS levels in ADSCs. Furthermore, the combination of dECM with SeNPs significantly upregulated the expression of key myogenic markers, including MYOD, MYOG, Desmin, and myosin heavy chain in ADSCs. Notably, this combination also led to an increase in both the number of mitochondria and the respiratory chain activity in ADSCs. Conclusion: The concurrent application of SeNPs and dECM effectively diminishes ROS production, boosts mitochondrial function, and stimulates the myogenic differentiation of ADSCs. This study lays the groundwork for future treatments of VML utilizing the combination of SeNPs and dECM.


Assuntos
Células-Tronco Mesenquimais , Nanocompostos , Selênio , Humanos , Dióxido de Silício , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Porosidade , Músculo Esquelético , Diferenciação Celular
16.
Food Sci Nutr ; 11(10): 5882-5889, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823100

RESUMO

The growing demand for high food quality has been encouraging researchers in the food industry to apply biodegradable nanocomposites, which provide new opportunities and challenges for the advance of nanomaterials in the food industry. The objective of this study was to estimate the antibacterial activity and cytotoxicity effects of zinc oxide nanocomposite/zeolite (c/Zeo) with Aloe vera gel (AG) and its effect on the shelf life of chicken meat. The ZnONPs/Zeo was assessed using X-ray fluorescence (XRF) and field emission scanning electron microscopy (FE-SEM) analyses. The cytotoxicity effect of ZnONPs/Zeo was assessed by MTT assay. Then, the minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of ZnONPs/Zeo and ZnONPs/Zeo-AG against Salmonella typhi and Salmonella para typhi A were investigated. Also, the preservative effect of nanocomposites on chicken fillets was evaluated. The results showed that these nanocomposites have the least cytotoxicity effect, resulting in good biocompatibility with the host. The MIC and MBC values of ZnONPs/Zeo-AG were lower than the ZnONPs/Zeo against S. typhi and S. paratyphi A. Both ZnONPs/Zeo-AG and ZnONPs/Zeo caused a significant decrease in the bacterial count of the chicken fillets. So, by spraying on meat, the number of bacteria presented a sharper decline as compared with the control group, resulting in an approximately 3.3 and 3-log10 reduction over 48 h in the ZnONPs/Zeo-AG and ZnONPs/Zeo treatment samples, respectively. In conclusion, antimicrobial packaging with ZnONPs containing A. vera is a beneficial solution for preserving and improving the quality, safety, and shelf life of fresh meat products.

17.
J Biomater Appl ; 38(5): 629-645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844268

RESUMO

BACKGROUND: As a consequence of their eco-friendliness, simplicity and non-toxicity, the fabrication of metal and metal oxide nanoparticles using greener chemistry has been a highly attractive research area over the last decade. AIM: In this study focused on the fabrication of silver-Zinc oxide nanocomposite (Ag-ZnO NCs) using Ruta chalepensis leaf extract and evaluating its potential biological activities, against Echinococcus granulosus in an in vitro and in vivo model using BALB/c mice. METHODS: In this study, the synthesis of Ag-ZnO NCs was accomplished using local R. chalepensis leaf extracts. The synthesized nanocomposites were identified using UV-Vis, SEM-EDX, XRD, and FTIR. For a short-term assessment of acute toxicity, BALB/c mice were given the prepared NCs orally. Dual sets of mice were also intraperitoneally injected with protoscoleces for secondary echinococcosis infection. Furthermore, a blood compatibility test was carried out on the nanocomposites. RESULTS: The synthesized Ag-ZnO NCs presented a surface plasmon peak at 329 and 422 nm. The XRD, SEM, and EDX confirmed the purity of the Ag-ZnO NCs. The FTIR spectra indicated the formation of Ag-ZnO NCs. Compared to the untreated infected mice, the treated-infected animals displayed an alteration in the appearance of the hepatic hydatid cysts from hyaline to whitish cloudy with a rough surface appearance. Lysis of RBCs at various doses of Ag-ZnONCs was significantly less than the positive contro,. CONCLUSION: These findings revealed that the Ag-ZnO NCs didn't cause any adverse symptoms and no mortality was observed in all administered groups of mice. The obtained outcomes confirmed that concentrations of up to 40 µg/mL of the bio-fabricated Ag-ZnONCs induced no notable harm to the red blood cells.


Assuntos
Equinococose , Nanopartículas Metálicas , Nanocompostos , Ruta , Óxido de Zinco , Animais , Camundongos , Óxido de Zinco/farmacologia , Equinococose/tratamento farmacológico , Extratos Vegetais , Antibacterianos/farmacologia
18.
Bioorg Chem ; 141: 106804, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806049

RESUMO

In this study, we bring forward a green and novel eco-friendly strategy for the fabrication of Ag/g-C3N4 nanocomposite via a fast in-situ generation method using Ferula Gummosa extracts as both stabilizer and reducing agent. Ag/g-C3N4 nanocomposite was analyzed by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX-MAP), and transmission electron microscopy (TEM). After procurement and characterization, the catalytic activity of the prepared reagent was surveyed in the synthesis of a new series of depsipeptides using aspirin/ketoprofen, cyclohexyl isocyanide, and aryl aldehydes at ambient temperature in EtOH/H2O as a green media. Taking into account the economic and environmental facets, the method bestows some advantages such as using plant extracts as green media for the preparation of Ag nanoparticles, simple work-up procedure, mild reaction conditions, short reaction times, and high yields of the products. Additionally, the Ag/g-C3N4 nanocomposite catalyst can be recycled effectually and reused several times without a substantial loss in reactivity.


Assuntos
Depsipeptídeos , Nanopartículas Metálicas , Nanocompostos , Neoplasias , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Prata/química , Nanocompostos/química
19.
Materials (Basel) ; 16(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37763378

RESUMO

The article presents the results of mechanical testing of Ni-P/Si3N4 nanocomposite and hybrid Ni-P/Si3N4/graphite coatings deposited on AW-7075 aluminum alloy using the chemical reduction method. In terms of mechanical testing, microhardness was measured, and surface roughness and adhesion of the coatings to the aluminum substrate were determined using the "scratch test" method. The surface morphology of the deposited layers was also analyzed using light microscopy and scanning electron microscopy. Samples made of AW-7075 aluminum alloy with electroless deposited Ni-P/Si3N4 nanocomposite, Ni-P/graphite composite and hybrid Ni-P/Si3N4/graphite coatings with different content of dispersed phases were tested, and also, for comparison purposes, the Ni-P layer that constituted the matrix of the tested materials. Reinforcing phases in the form of silicon nitride nanoparticles and graphite particles were used in the layers. The purpose of the research was a thorough characterization of the coating materials used on aluminum alloys in terms of mechanical properties. Graphite is considered in this paper as it enables the reduction of the coefficient of friction through its lubricating properties. Unfortunately, graphite is difficult to use in selected layers as the only dispersion phase, because it has much lower hardness than the Ni-P coating. For this reason, a layer with a single dispersion phase in the form of graphite will be characterized by worse mechanical properties. It is necessary to add particles or nanoparticles with hardness higher than the base Ni-P coating, e.g., Si3N4, which improve the mechanical properties of the coating. The presented analyses of the results of the conducted research complement the previous studies on selected properties of nanocomposite layers with an amorphous structure and supplement the knowledge regarding their suitability for application to aluminum machine parts.

20.
Drug Deliv ; 30(1): 2254530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668361

RESUMO

Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.


Assuntos
Neoplasias Bucais , Lesões Pré-Cancerosas , Animais , Cricetinae , Humanos , Carragenina , Neoplasias Bucais/tratamento farmacológico , Lesões Pré-Cancerosas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA