Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Equine Vet Sci ; 136: 105073, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642814

RESUMO

Oxidative damage to sperm during cooled storage is a significant issue, and selenium with antioxidant potential could be a solution. Moreover, nano-sized selenium offers more advantages compared to its ionic forms. This research aimed to assess the impact of selenium nanoparticles (SeNPs) supplemented in the INRA96 extender on the quality of Turkmen stallion sperm and lipid peroxidation during 72 h of cooled storage. A total of 25 ejaculates were treated using different concentrations of SeNPs, including no SeNPs (Control), 0.5 µM SeNPs (SeNPs 0.5), 1.0 µM SeNPs (SeNPs 1.0), and 1.5 µM SeNPs (SeNPs 1.5). The samples were then evaluated for sperm quality characteristics and lipid peroxidation. The results indicated a significant decrease (P < 0.05) in total and progressive motility, viability, and plasma membrane functionality after 48 h of cooled storage, along with an increase (P < 0.05) in spermatozoa abnormality and malondialdehyde (MDA) levels as the cooled storage time increased. However, SeNPs demonstrated an improvement (P < 0.05) in sperm total motility after 24 h of cooled storage, progressive motility throughout the entire 72-hour period, functionality of the plasma membrane after 48 hours of cooled storage, spermatozoa abnormality after 48 h of cooled storage, and semen MDA levels throughout the cooled storage (P < 0.05). In conclusion, the enrichment of the INRA96 extender with nano-sized selenium can enhance the quality of Turkmen stallion sperm during storage at 5 °C by increasing total, progressive, and curvilinear motilities, improving plasma membrane functionality, and reducing sperm abnormalities and lipid peroxidation.


Assuntos
Peroxidação de Lipídeos , Nanopartículas , Selênio , Preservação do Sêmen , Espermatozoides , Masculino , Selênio/farmacologia , Selênio/química , Selênio/administração & dosagem , Animais , Cavalos , Peroxidação de Lipídeos/efeitos dos fármacos , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides/efeitos dos fármacos , Temperatura Baixa
2.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
3.
Int J Biol Macromol ; 261(Pt 2): 129900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316329

RESUMO

The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano­selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.


Assuntos
Quitosana , Malus , Mercúrio , Selênio , Poluentes Químicos da Água , Humanos , Sucos de Frutas e Vegetais , Malus/química , Quitosana/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
4.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401225

RESUMO

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Assuntos
Ferroptose , Selênio , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Galinhas/fisiologia , Coxa da Perna , Suplementos Nutricionais/análise , Músculo Esquelético , Resposta ao Choque Térmico , Superóxido Dismutase/metabolismo , Carne/análise , RNA Mensageiro/metabolismo , Ração Animal/análise
5.
Sci Total Environ ; 914: 169923, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199344

RESUMO

Applying selenium (Se) fertilizer is the only way to alleviate soil Se deficiency. Although effects of nanoselenium foliar application on plant growth and stress resistance have been extensively investigated, soil application of nanoselenium on soil microorganisms and their relationship with crop quality and soil health remains unclear. In this study, a steady-state homogeneous nanoparticle of epigallocatechin gallate Se (ESe) was synthesized, and a pot experiment was conducted applying ESe at five concentrations (0, 1, 10, 50, and 100 mg kg-1) to the tea planattion soil. The study revealed a significant increase in Se concentration in soil and tea with ESe application and identified 2.43-7.8 mg kg-1 as the safe and optimal range for soil application. Specifically, the moderate dose of ESe improved the tea quality [reduced tea polyphenols (TP), increased free amino acids (AA), and reduced TP/AA] and soil quality index (SQI). Besides, in marure tea leaves, antioxidant enzyme activities [promote catalase (CAT) superoxide dismutase (SOD), and peroxidase (POD)] increased, while level of oxidative stress [malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2-)] decreased with ESe application. The 16S rRNA of the soil bacteria showed that ESe application significantly changed the community structure of soil bacteria but did not alter the diversity of the bacteria and the abundance of dominant taxa (phylum and genus levels). Statistical analysis of the taxonomic and functional profiles (STAMP) detected 21 differential taxa (genus level), mainly low-abundance ones, under the ESe application. Linear regression and random forest (RF) modeling revealed that the low-abundance bacterial taxa were significantly correlated with SQI (R2 = 0.28, p < 0.01) and tea quality (R2 = 0.23-0.37, p < 0.01). Thus, the study's findings suggest that ESe application affects soil and tea quality by modulating the low-abundance taxa in soil. The study also highlights the crucial role of low-abundance bacterial taxa of the rhizosphere in regulating soil functions under the ESe application.


Assuntos
Camellia sinensis , Catequina/análogos & derivados , Selênio , Solo/química , Peróxido de Hidrogênio/metabolismo , RNA Ribossômico 16S , Antioxidantes/metabolismo , Bactérias , Selênio/metabolismo , Polifenóis/metabolismo , Chá/química , Chá/metabolismo
6.
Biol Trace Elem Res ; 202(4): 1699-1710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37454307

RESUMO

Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.


Assuntos
Células Caliciformes , Selênio , Animais , Feminino , Células Caliciformes/metabolismo , Proteína Sequestossoma-1/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Galinhas/metabolismo , Autofagia , Intestino Delgado/metabolismo
7.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860879

RESUMO

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismo
8.
Anim Biotechnol ; 35(1): 2290526, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38085574

RESUMO

The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.


Assuntos
Detergentes , Lactação , Feminino , Bovinos , Animais , Lactação/fisiologia , Detergentes/metabolismo , Detergentes/farmacologia , Digestão/fisiologia , Leite/metabolismo , Dieta/veterinária , Nutrientes , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Rúmen/metabolismo , Ração Animal/análise
9.
Biol Trace Elem Res ; 202(9): 4191-4202, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38110606

RESUMO

This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.


Assuntos
Ceco , Microbioma Gastrointestinal , Nanopartículas , Selênio , Animais , Selênio/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/química , Ceco/microbiologia , Ceco/metabolismo , Codorniz , Suplementos Nutricionais , Ração Animal/análise , Coturnix , Antioxidantes/metabolismo
10.
Ecotoxicol Environ Saf ; 267: 115653, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948939

RESUMO

Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.


Assuntos
Cactaceae , Selênio , Betalaínas , Biofortificação , Frutas , Metabolismo Secundário , Antioxidantes
11.
Micron ; 175: 103545, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801986

RESUMO

Selenium is commonly used as a supplement in the poultry diet and plays an important role in male fertility. However, the effect of selenium nanoparticles (Se-NPs) on exosome secretion associated with spermatozoa in the epididymis is largely unknown. H&E staining, Immunohistochemistry, Immunofluorescence and Western blot were performed to study the effect of Se-NPs on exosomes secretion associated with sperm maturation in epididymis. The results indicated that the Se-NPs showed a significant contribution to sperm concentration by light microscopy. It was observed that there was an increase in the spermatozoa concentration in the epididymis of the treated group as compared to the control group. Furthermore, exosome secretion, the expression of tumor susceptibility gene-101 (TSG-101) and cluster of differentiation (CD-63) proteins was identified by immunochemistry, immunofluorescence assay, and western blotting. After nano-selenium treatment, the exosome markers TSG-101 and CD-63 were strong positive immunoreactivity and immunosignaling in the lumen followed by epithelial lining of the epididymis. However weak positive immunoreactivity and immunosignaling were seen of TSG-101 and CD63 in the control group. In addition, highly significant protein expression of TSG-101 and CD63 in the treated group as compared to the control group was confirmed by western blotting. In conclusion, the above findings provide rich evidence about the Se-NPs play a dynamic role in exosome secretion that might be essential for sperm motility and maturation within epididymis.


Assuntos
Exossomos , Selênio , Masculino , Humanos , Epididimo , Selênio/farmacologia , Maturação do Esperma , Sêmen , Motilidade dos Espermatozoides , Espermatozoides
12.
J Plant Physiol ; 289: 154095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37741053

RESUMO

Few studies have been conducted to investigate the impact of pesticides on the secondary metabolism of traditional Chinese medicine and strategies to mitigate the toxicity of pesticide-induced oxidative stress. The current study focuses on evaluating the potential impacts of nano selenium (NSe) and imidacloprid (IMI) on the quality, physiological biochemistry, and secondary metabolites in Perilla frutescens (L.) Britt. (P. frutescens). The study utilized metabolome analysis to explore the toxicity mechanism of IMI. The study noted that IMI-induced stress could emerge with detrimental effects by targeting the destruction of the phenylpropanoid biosynthesis pathway. IMI-induced phenylpropanoid metabolism disorder resulted in an 8%, 17%, 25%, 10%, 65%, and 29% reduction in phenylalanine, coniferyl aldehyde, ferulic acid, cafestol, p-coumaraldehyde, and p-coumaric acid levels, respectively. Under the treatment of exogenous NSe, the levels of these metabolites were increased by 16%, 32%, 22%, 22%, 92%, and 29%, respectively. The application of exogenous NSe increased the levels of these metabolites and improved the biochemical disorder and quality of P. frutescens leaves by optimizing the phenylpropanoid metabolic pathway and enhancing the antioxidant system. Overall, the results suggest that foliar application of NSe could alleviate the oxidative stress toxicity induced by IMI and improve the quality of P. frutescens.

13.
World J Microbiol Biotechnol ; 39(11): 312, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733086

RESUMO

Pseudomonas spp are considered a common milk-associated psychotropic bacteria, leading to milk deterioration during storage; therefore, our study aimed to study the distribution of Pseudomonas aeruginosa in raw milk and its associated products then studying the growth behavior of P. aeruginosa in milk after employing chitosan nanoparticles (CsNPs 50, 25, and 15 mg/100ml) and selenium nanoparticles (SeNPs 0.5, 0.3 and 0.1 mg/100ml) as a trial to control the bacterial growth in milk during five days of cooling storage. Our study relies on the ion gelation method and green synthesis for the conversion of chitosan and selenium to nanosized particles respectively, we subsequently confirmed their shape using SEM and TEM. We employing Pseudomonas selective agar medium for monitoring the bacterial growth along the cooling storage. Our findings reported that high prevalence of Pseudomonas spp count in raw milk and kareish cheese and high incidence percent of P. aeruginosa in ice cream and yogurt respectively. Both synthesized nanoparticles exhibited antibacterial activity in a dose-dependent manner. Moreover, CsNPs50 could inhibit the P. aeruginosa survival growth to a mean average of 2.62 ± 1.18 log10cfu/ml in the fifth day of milk cooling storage; also, it was noted that the hexagonal particles SeNPs0.5 could inhibit 2.49 ± 11 log10cfu/ml in comparison to the control P. aeruginosa milk group exhibited growth survival rate 7.24 ± 2.57 log10cfu/ml under the same conditions. In conclusion, we suggest employing chitosan and selenium nanoparticles to improve milk safety and recommend future studies for the fate of nanoparticles in milk.


Assuntos
Quitosana , Selênio , Animais , Selênio/farmacologia , Pseudomonas aeruginosa , Leite , Quitosana/farmacologia , Pseudomonas
14.
Front Vet Sci ; 10: 1228360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732141

RESUMO

Introduction: Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods: A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 µg/kg OTA), the OTA-Se cohort (50 µg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion: Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.

15.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499390

RESUMO

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Esterco/análise , Genes Bacterianos , Antibacterianos/farmacologia , Quimiotaxia/genética , Selenito de Sódio/farmacologia , Galinhas/genética , Bactérias , Resistência Microbiana a Medicamentos/genética , Bacteroidetes , Firmicutes
16.
Trop Anim Health Prod ; 55(4): 260, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402941

RESUMO

The present experiment was aimed at finding the optimal supplemental dose of nano-selenium in broiler chicken during the summer season for better performance in terms of growth, blood metabolites, immune response, antioxidant status, and selenium concentration in vital organs. Three-hundred-day-old Vencobb broiler chicks were randomly distributed into five dietary treatment groups with six replicates of 10 chicks each. The dietary treatments were as follows: T1 (control group), basal diet; T2, basal diet with 0.0375 ppm of nano-Se; T3, basal diet with 0.075 ppm of nano-Se; T4, basal diet with 0.15 ppm of nano-Se; T5, basal diet with 0.3 ppm of nano-Se. The experiment was carried out for 35 days. The average gain and feed conversion ratio were best observed in T4 and T5. The antibody titres were significantly higher (P < 0.05) in the treated birds. At the 5th week, erythrocytic glutathione peroxidase, catalase, and superoxide dismutase activities were significantly (P < 0.05) higher and lipid peroxidation values were significantly (P < 0.05) lower in all the nano-Se-treated groups. The Se levels in the liver, breast muscle, kidney, brain, and gizzard were significantly (P < 0.05) increased with increased dietary nano-Se. Histological studies of the liver and kidney in the highest nano-Se-treated groups (T4 and T5) did not show any abnormal changes. It is concluded that supplementation of nano-selenium at 0.15 ppm over and above the basal level improved the performance and protect the birds from summer stress without any adverse effect on the vital organs of chicken.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Galinhas , Suplementos Nutricionais , Estações do Ano , Dieta/veterinária , Ração Animal/análise
17.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438752

RESUMO

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Assuntos
Colite , Eucommiaceae , Doenças Inflamatórias Intestinais , Selênio , Animais , Camundongos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
18.
J Agric Food Chem ; 71(25): 9896-9907, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306234

RESUMO

Cadmium (Cd) is a hazardous environmental metal that poses a global public health concern due to its high toxic potential. Nanoselenium (Nano-Se) is a nanoform of elemental Se that is widely used to antagonize heavy metal toxicity owing to its high safety margin with low doses. However, the role of Nano-Se in relieving Cd-induced brain damage is unclear. For this study, Cd-exposure-induced cerebral damage was established by using a chicken model. Administration of Nano-Se with Cd significantly decreased the Cd-mediated elevation of cerebral ROS, MDA, and H2O2 levels as well as markedly increased the Cd-mediated reduced activities of antioxidant biomarkers (GPX, T-SOD, CAT, and T-AOC). Accordingly, co-treatment with Nano-Se significantly reduced Cd-mediated increased Cd accumulation and recovered the Cd-induced biometal imbalance, notably Se and Zn. Nano-Se downregulated the Cd-induced upregulation of ZIP8, ZIP10, ZNT3, ZNT5, and ZNT6 and upregulated the Cd-mediated decreased expressions of ATOX1 and XIAP. Nano-Se also increased the Cd-mediated decreased mRNA levels of MTF1 and its target genes MT1 and MT2. Surprisingly, co-treatment with Nano-Se regulated the Cd-induced increased total protein level of MTF1 by reducing its expression. Moreover, altered selenoproteins regulation was recovered after co-treatment with Nano-Se as evidenced by increased expression levels of antioxidant selenoproteins (GPx1-4 and SelW) and Se transport-related selenoproteins (SepP1 and SepP2). The histopathological evaluation and Nissl staining of the cerebral tissues also supported that Nano-Se markedly reduced the Cd-induced microstructural alterations and well preserved the normal histological architectures of the cerebral tissue. Overall, the results of this research reveal that Nano-Se may be beneficial in mitigating Cd-induced cerebral injury in the brains of chickens. This present study provides a basis for preclinical research for its usefulness as a potential therapeutic for the treatment of neurodegeneration in the heavy-metal-induced neurotoxicity.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Selênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Galinhas/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Estresse Oxidativo
19.
Vet Microbiol ; 284: 109816, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348210

RESUMO

Riemerella anatipestifer (RA) is a common disease causing economic losses to duck farms worldwide. Novel supplements are crucially needed to control this bacterium, enhance poultry performance, and produce synergistic effects with vaccines in stimulating the immune system. This study investigated the effect of nano-selenium (Nano-Se) on the vaccinated (VAC) and challenged (Ch) Pekin ducklings (Anas platyrhynchos) with RA. Five experimental groups (G1-G5) were included in this study: G1 was the control group, G2 was the RA-challenged group, G3 was the Nano-Se+Ch group, G4 was the VAC+Ch group, and G5 was the Nano-Se+VAC+Ch group. The Nano-Se (0.3 mg/kg diet) was supplemented for 5 weeks post-vaccination (PV). The ducklings were vaccinated subcutaneously with the RA vaccine at 7 days of age and challenged with RA at the 3rd week PV. Blood, pharyngeal swabs and tissue samples were collected at the 3rd week PV and at different times post-challenge (PC). The growth performance (weight gain and feed conversion ratio), clinical signs, gross lesions, mortality, bacterial shedding, haematological, immunological, and biochemical parameters, cytokines production, and histopathological lesion scores showed significant differences (P < 0.05) between the challenged (G2) group and the supplemented (G3 & G5) groups. G5 showed the highest (P < 0.05) growth performance, phagocytic activity, IgM and IgG, splenic interleukin-2 (IL-2), IL-10, and interferon-gamma (IFN-γ) gene expressions, and the lowest mortality, bacterial shedding, hepatic and renal damage, heterophil/lymphocyte ratio and lesion scores compared to the other groups. In conclusion, the supplementation of nano-selenium for five weeks in the diet can improve the growth performance, immune status, and cytokines production in ducklings vaccinated and challenged with RA.


Assuntos
Doenças das Aves Domésticas , Riemerella , Selênio , Animais , Patos/microbiologia , Doenças das Aves Domésticas/microbiologia , Selênio/farmacologia , Riemerella/genética , Suplementos Nutricionais
20.
Physiol Rep ; 11(9): e15682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144592

RESUMO

Hypothyroidism can induce oxidative stress. Nano-selenium (Nano Sel) has antioxidant effects. The current research explored Nano Sel effects on hepatic and renal oxidative damage induced by hypothyroidism in rats. Animals were grouped into (1) Control; (2) Propylthiouracil (PTU) group which received water mixed with 0.05% of PTU; (3) PTU-Nano Sel 50; (4) PTU-Nano Sel 100; and (5) PTU-Nano Sel 150. Besides PTU, the PTU-Nano Sel groups were treated with 50, 100, or 150 µg/kg of Nano Sel intraperitoneally. Treatments were done for 6 weeks. The serum level of T4, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), albumin, total protein, creatinine, and blood urea nitrogen (BUN) was evaluated. Malondialdehyde (MDA) and total thiol concentration and the activity of catalase (CAT) and superoxide dismutase (SOD) in hepatic and renal tissues also were checked. Hypothyroidism induced by PTU significantly increased AST, ALT, ALP, creatinine, BUN, and MDA concentration and noticeably reduced albumin, total protein, total thiol level, and SOD and CAT activity. Administration of Nano Sel ameliorated the adverse effects of hypothyroidism on liver and kidney function. Nano Sel applied protective effects against hepatic and renal damage resulting from hypothyroidism via ameliorating the oxidative stress status. More cellular and molecular experiments need to be done to understand the exact mechanisms.


Assuntos
Hipotireoidismo , Selênio , Ratos , Animais , Selênio/farmacologia , Selênio/uso terapêutico , Creatinina , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Hipotireoidismo/tratamento farmacológico , Fígado/metabolismo , Rim/metabolismo , Superóxido Dismutase/metabolismo , Compostos de Sulfidrila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA