Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 58, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584284

RESUMO

BACKGROUND: Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS: The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS: DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION: DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.

2.
Neuromolecular Med ; 26(1): 14, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630350

RESUMO

Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Sistema Nervoso Central , Colo , Ácidos Graxos Voláteis , Inflamação
3.
Phytother Res ; 38(6): 3169-3189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616356

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.


Assuntos
Doença de Alzheimer , Anti-Inflamatórios , Curcumina , Fármacos Neuroprotetores , Curcumina/farmacologia , Curcumina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Humanos , Fármacos Neuroprotetores/farmacologia , Anti-Inflamatórios/farmacologia , Animais , Doenças Neuroinflamatórias/tratamento farmacológico , Antioxidantes/farmacologia , Curcuma/química , Disponibilidade Biológica
4.
Mol Neurobiol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639862

RESUMO

Fibromyalgia (FM) is a painful chronic condition that significantly impacts the quality of life, posing challenges for clinical management. Given the difficulty of understanding the pathophysiology and finding new therapeutics, this study explored the effects of a medicinal plant, E. brasiliensis, in an FM model induced by reserpine in Swiss mice. Animals were treated with saline 0.9% (vehicle), duloxetine 10 mg/kg (positive control), or hydroalcoholic extract of E. brasiliensis leaves 300 mg/kg (HEEb). Nociceptive parameters, as well as locomotion, motor coordination, strength, anxiety, and depressive-like behaviors, were evaluated for 10 days. After that, the brain and blood were collected for further analysis of cytokines (interleukin 1? and interleukin 6), brain-derived neurotrophic factor (BDNF), and the immunocontents of total and phosphorylated Tropomyosin receptor kinase B (TrkB). The results demonstrated that the acute and prolonged treatment with HEEb was able to reduce both mechanical and thermal nociception. It was also possible to observe an increase in the strength, without changing locomotion and motor coordination parameters. Interestingly, treatment with HEEb reduces anxious and depressive-like behaviors. Finally, we observed a reduction in inflammatory cytokines in the hippocampus of animals treated with HEEb, while an increase in BDNF was observed in the prefrontal cortex (PFC). However, no alterations related to total and phosphorylated TrkB receptor expression were found. Our study demonstrated the antinociceptive and emotional effects of HEEb in mice, possibly acting on neuroinflammatory and neurotrophic mechanisms. These data provide initial evidence about the E. brasiliensis potential for treating chronic pain.

5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621941

RESUMO

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Assuntos
Artemisininas , Neuralgia , Camundongos , Animais , Pregabalina , Ácido gama-Aminobutírico , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo
6.
Phytomedicine ; 128: 155394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569294

RESUMO

BACKGROUND: Current therapeutic agents for AD have limited efficacy and often induce undesirable side effects. Gegen Qinlian tablets (GGQLT) are a well-known clearingheat formula used in clinical treatment of inflammatory diseases. Based on traditional Chinese medicine (TCM) theory, the strategy of clearing-heat is then compatible with the treatment of AD. However, it remains unknown whether GGQLT can exert neuroprotective effects and alleviate neuroinflammation in AD. PURPOSE: This study aimed to evaluate the anti-AD effects of GGQLT and to decipher its intricate mechanism using integrative analyses of network pharmacology, transcriptomic RNA sequencing, and gut microbiota. METHODS: The ingredients of GGQLT were analyzed using HPLC-ESI-Q/TOF-MS. The AD model was established by bilateral injection of Aß1-42 into the intracerebroventricular space of rats. The Morris water maze was used to evaluate the cognitive function of the AD rats. The long-term toxicity of GGQLT in rats was assessed by monitoring their body weights and pathological alterations in the liver and kidney. Reactive astrocytes and microglia were assessed by immunohistochemistry by labeling GFAP and Iba-1. The levels of inflammatory cytokines in the hippocampus were evaluated using ELISA kits, RT-PCR, and Western blot, respectively. The potential anti-AD mechanism was predicted by analyses of RNA-sequencing and network pharmacology. Western blot and immunohistochemistry were utilized to detect the phosphorylation levels of IκBα, NF-κB p65, p38, ERK and JNK. The richness and composition of gut bacterial and fungal microflora were investigated via 16S rRNA and ITS sequencing. RESULTS: Typical ingredients of GGQLT were identified using HPLC-ESI-Q/TOF-MS. GGQLT significantly improved the cognitive function of AD rats by suppressing the activation of microglia and astrocytes, improving glial morphology, and reducing the neuroinflammatory reactions in the hippocampus. RNA-sequencing, network and experimental pharmacological studies demonstrated that GGQLT inhibited the activation of NF-κB/MAPK signaling pathways in the hippocampus. GGQLT could also restore abnormal gut bacterial and fungal homeostasis and no longer-term toxicity of GGQLT was observed. CONCLUSIONS: Our findings, for the first time, demonstrate GGQLT exhibit anti-AD effects and is worthy of further exploration and development.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Masculino , Ratos , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Homeostase/efeitos dos fármacos , Comprimidos , Peptídeos beta-Amiloides/metabolismo , Neuroglia/efeitos dos fármacos , Farmacologia em Rede , Progressão da Doença , Citocinas/metabolismo
7.
Phytomedicine ; 129: 155610, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640861

RESUMO

BACKGROUND: Lycium barbarum glycopeptide (LbGp), extracted from the traditional Chinese medicine (TCM) of Lycium barbarum (LB), provides a neuroprotective effect against neurodegenerative and neuroimmune disorders contributing to its immunomodulatory and anti-inflammatory roles. Neuromyelitis optica spectrum disorders (NMOSD) is an autoimmune-mediated central nervous system (CNS) demyelinating disease, clinically manifested as transverse myelitis (TM) and optic neuritis. However, no drug has been demonstrated to be effective in relieving limb weakness and visual impairment of NMOSD patients. PURPOSE: This study investigates the potential role of LbGp in ameliorating pathologic lesions and improving neurological dysfunction during NMOSD progression, and to elucidate the underlying mechanisms for the first time. STUDY DESIGN: We administrate LbGp in experimental NMOSD models in ex vivo and in vivo to explore its effect on NMOSD. METHODS: To evaluate motor function, both rotarod and gait tasks were performed in systemic NMOSD mice models. Furthermore, we assessed the severity of NMO-like lesions of astrocytes, organotypic cerebellar slices, as well as brain, spinal cord and optic nerve sections from NMOSD mouse models with LbGp treatment by immunofluorescent staining. In addition, demyelination levels in optic nerve were measured by G-ratio through Electro-microscopy (EM). And inflammation response was explored through detecting the protein levels of proinflammatory cytokines and NF-κB signaling in astrocytic culture medium and spinal cord homogenates respectively by Elisa and by Western blotting. RESULTS: LbGp could significantly reduce astrocytes injury, demyelination, and microglial activation in NMOSD models. In addition, LbGp also improved locomotor and visual dysfunction through preventing neuron and retinal ganglion cells (RGCs) from inflammatory attack in a systemic mouse model. Mechanistically, LbGp inhibits proinflammatory factors release via inhibition of NF-κB signaling in NMOSD models. CONCLUSION: This study provides evidence to develop LbGp as a functional TCM for the clinical treatment of NMOSD.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Neuromielite Óptica , Animais , Camundongos , Neuromielite Óptica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Transtornos da Visão/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Astrócitos/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38459987

RESUMO

PM2.5 exposure is a challenging environmental issue that is closely related to cognitive development impairment; however, currently, relevant means for prevention and treatment remain lacking. Herein, we determined the preventive effect of docosahexaenoic acid (DHA) supplementation on the neurodevelopmental toxicity induced by PM2.5 exposure. Neonatal rats were divided randomly into three groups: control, PM2.5, and DHA + PM2.5 groups. DHA could ameliorate PM2.5-induced learning and memory dysfunction, as well as reverse the impairment of hippocampal synaptic plasticity, evidenced by enhanced long-term potentiation, recovered synaptic ultrastructure, and increased expression of synaptic proteins. Moreover, DHA increased CREB phosphorylation and BDNF levels and attenuated neuroinflammation and oxidative stress, reflected by lower levels of IBA-1, IL-1ß, and IL-6 and increased levels of SOD1 and Nrf2. In summary, our findings demonstrated that supplementation of DHA effectively mitigated the cognitive dysfunction and synaptic plasticity impairment induced by early postnatal exposure to PM2.5. These beneficial effects may be attributed to the upregulation of the CREB/BDNF signaling pathway, as well as the reduction of neuroinflammation and oxidative stress.

9.
Mol Neurobiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427213

RESUMO

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.

10.
J Ethnopharmacol ; 328: 118114, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552993

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Lesões Encefálicas , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Transdução de Sinais , Etanol/farmacologia , Lesões Encefálicas/tratamento farmacológico , Biomarcadores , Quinases Associadas a rho/metabolismo
11.
J Cannabis Res ; 6(1): 14, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494488

RESUMO

BACKGROUND: The treatment of diverse diseases using plant-derived products is actively encouraged. In the past few years, cannabidiol (CBD) has emerged as a potent cannabis-derived drug capable of managing various debilitating neurological infections, diseases, and their associated complications. CBD has demonstrated anti-inflammatory and curative effects in neuropathological conditions, and it exhibits therapeutic, apoptotic, anxiolytic, and neuroprotective properties. However, more information on the reactions and ability of CBD to alleviate brain-related disorders and the neuroinflammation that accompanies them is needed. MAIN BODY: This narrative review deliberates on the therapeutic and remedial prospects of CBD with an emphasis on neurological and neuropsychiatric disorders. An extensive literature search followed several scoping searches on available online databases such as PubMed, Web of Science, and Scopus with the main keywords: CBD, pro-inflammatory cytokines, and cannabinoids. After a purposive screening of the retrieved papers, 170 (41%) of the articles (published in English) aligned with the objective of this study and retained for inclusion. CONCLUSION: CBD is an antagonist against pro-inflammatory cytokines and the cytokine storm associated with neurological infections/disorders. CBD regulates adenosine/oxidative stress and aids the downregulation of TNF-α, restoration of BDNF mRNA expression, and recovery of serotonin levels. Thus, CBD is involved in immune suppression and anti-inflammation. Understanding the metabolites associated with response to CBD is imperative to understand the phenotype. We propose that metabolomics will be the next scientific frontier that will reveal novel information on CBD's therapeutic tendencies in neurological/neuropsychiatric disorders.

12.
Redox Biol ; 71: 103105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471283

RESUMO

Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Dieta , Suplementos Nutricionais
13.
J Integr Neurosci ; 23(3): 57, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38538226

RESUMO

Recently, novel non-pharmacological interventions, such as photobiomodulation (PBM) therapy, have shown promise for the treatment of Alzheimer's disease (AD). This article outlines the translation from the preclinical to clinical stages of an innovative brain-gut PBM therapy in a mouse model of AD, a pilot clinical trial involving mild-to-moderate AD patients, and a continuing pivotal clinical trial with a similar patient population. In a mouse model of AD (Aß25-35), daily application of brain-gut PBM therapy to both the head and the abdomen produced a neuroprotective effect against the neurotoxic effects of an Aß25-35 peptide injection by normalizing all the modified behavioral and biochemical parameters. The pilot clinical trial to evaluate brain-gut PBM therapy demonstrated the tolerability and feasibility of the novel PBM-based treatment for mild-to-moderate AD patients. Compared to the sham patients, the PBM-treated patients had lower Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) comprehension sub-scores, higher forward verbal spans, and lower Trail Making Test (TMT) Part B (TMT-B) execution times, which suggest an improvement in cognitive functions. This pilot study provided important information for the design of a novel pivotal clinical trial, currently in progress, to assess the efficacy of brain-gut PBM therapy in a larger sample of AD patients. This pivotal clinical trial could demonstrate that brain-gut PBM therapy is a safe, well-tolerated, and efficient disease-modifying treatment for mild-to-moderate AD patients and that it has medical and economic benefits.


Assuntos
Doença de Alzheimer , Terapia com Luz de Baixa Intensidade , Animais , Camundongos , Humanos , Doença de Alzheimer/radioterapia , Doença de Alzheimer/tratamento farmacológico , Projetos Piloto , Encéfalo , Cognição
14.
Phytomedicine ; 127: 155466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461764

RESUMO

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Assuntos
Heme Oxigenase-1 , Doenças Neuroinflamatórias , Humanos , Heme Oxigenase-1/metabolismo , Depressão/tratamento farmacológico , Heme Oxigenase (Desciclizante)/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo
15.
Cureus ; 16(2): e54671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38524031

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.

16.
Biomed Pharmacother ; 173: 116379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452656

RESUMO

BACKGROUND: Microglia-mediated neuroinflammation is an important pathological feature in many neurological diseases; thus, suppressing microglial activation is considered a possible therapeutic strategy for reducing neuronal damage. Oxyimperatorin (OIMP) is a member of furanocoumarin, isolated from the medicinal herb Glehnia littoralis. However, it is unknown whether OIMP can suppress the neuroinflammation. PURPOSE: To investigate the neuroprotective activity of oxyimperatorin (OIMP) in LPS-induced neuroinflammation in vitro and in vivo models. METHODS: In vitro inflammation-related assays were performed with OIMP in LPS-induced BV-2 microglia. In addition, intraperitoneal injection of LPS-induced microglial activation in the mouse brain was used to validate the anti-neuroinflammatory activity of OIMP. RESULTS: OIMP was found to suppress LPS-induced neuroinflammation in vitro and in vivo. OIMP significantly attenuated LPS-induced the production of free radicals, inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines in BV-2 microglia without causing cytotoxicity. In addition, OIMP could reduce the M1 pro-inflammatory transition in LPS-stimulated BV-2 microglia. The mechanistic study revealed that OIMP inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. However, OIMP did not affect LPS-induced IκB phosphorylation and degradation. In addition, OIMP also was able to reduce LPS-induced microglial activation in mice brain. CONCLUSION: Our findings suggest that OIMP suppresses microglia activation and attenuates the production of pro-inflammatory mediators and cytokines via inhibition of NF-κB p65 signaling.


Assuntos
Microglia , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
17.
Phytomedicine ; 128: 155455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513376

RESUMO

BACKGROUND: Ischemic stroke (IS) is a serious cerebrovascular disease characterized by significantly elevated mortality and disability rates, and the treatments available for this disease are limited. Neuroinflammation and oxidative stress are deemed the major causes of cerebral ischemic injury. N-Cinnamoylpyrrole alkaloids form a small group of natural products from the genus Piper and have not been extensively analyzed pharmacologically. Thus, identifying the effect and mechanism of N-cinnamoylpyrrole-derived alkaloids on IS is worthwhile. PURPOSE: The present research aimed to explore the antineuroinflammatory and antioxidative stress effects of N-cinnamoylpyrrole-derived alkaloids isolated from the genus Piper and to explain the effects and mechanism on IS. METHODS: N-cinnamoylpyrrole-derived alkaloids were isolated from Piper boehmeriaefolium var. tonkinense and Piper sarmentosum and identified by various chromatographic methods. Lipopolysaccharide (LPS)-induced BV-2 microglia and a mouse model intracerebroventricularly injected with LPS were used to evaluate the antineuroinflammatory and antioxidative stress effects. Oxygen‒glucose deprivation/reperfusion (OGD/R) and transient middle cerebral artery occlusion (tMCAO) models were used to evaluate the effect of PB-1 on IS. To elucidate the fundamental mechanism, the functional target of PB-1 was identified by affinity-based protein profiling (ABPP) strategy and verified by cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS), and circular dichroism (CD) analyses. The effect of PB-1 on the NF-κB and NRF2 signaling pathways was subsequently evaluated via western blotting and immunofluorescence staining. RESULTS: The results showed that N-cinnamoylpyrrole-derived alkaloids significantly affected neuroinflammation and oxidative stress. The representative compound, PB-1 not only inhibited neuroinflammation and oxidative stress induced by LPS or OGD/R insult, but also alleviated cerebral ischemic injury induced by tMCAO. Further molecular mechanism research found that PB-1 promoted antineuroinflammatory and antioxidative stress activities via the NF-κB and NRF2 signaling pathways by targeting eEF1A1. CONCLUSION: Our research initially unveiled that the therapeutic impact of PB-1 on cerebral ischemic injury might rely on its ability to target eEF1A1, leading to antineuroinflammatory and antioxidative stress effects. The novel discovery highlights eEF1A1 as a potential target for IS treatment and shows that PB-1, as a lead compound that targets eEF1A1, may be a promising therapeutic agent for IS.


Assuntos
Alcaloides , AVC Isquêmico , Piper , Pirróis , Animais , Masculino , Camundongos , Alcaloides/farmacologia , Alcaloides/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piper/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pirróis/farmacologia , Pirróis/química , Cinamatos/química , Cinamatos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Fator 1 de Elongação de Peptídeos/metabolismo
18.
Phytother Res ; 38(6): 2669-2686, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500263

RESUMO

In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.


Assuntos
Curcumina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neurogênese , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Alicerces Teciduais , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Curcumina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Neurogênese/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Recuperação de Função Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Nanopartículas/química , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Soroalbumina Bovina/química
19.
Phytomedicine ; 128: 155530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493723

RESUMO

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , NF-kappa B/metabolismo , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Eixo Encéfalo-Intestino/efeitos dos fármacos , Panax notoginseng/química , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
20.
Phytomedicine ; 128: 155518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552431

RESUMO

BACKGROUND: Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE: The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN: The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS: 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1ß, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1ß and p-NF-κB p65 levels was assessed. RESULTS: 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION: Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.


Assuntos
Doença de Alzheimer , Álcoois Benzílicos , Modelos Animais de Doenças , Glucosídeos , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Gastrodia/química , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Fator de Transcrição STAT3/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Linhagem Celular , Fosforilação/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA