Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118129, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582151

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlingbaizhu (SLBZ) formula, a classical traditional Chinese medicinal (TCM) formula, has been widely used for treating antibiotic-associated diarrhea (AAD). However, the underlying pharmacological mechanisms have not yet been investigated thoroughly. AIM OF THE STUDY: To explore the remission mechanism of SLBZ in the treatment of AAD, we conducted network pharmacological analysis and experimental validation in vitro and in vivo. MATERIALS AND METHODS: In this study, the main compounds of SLBZ were identified by ultra-high-performance liquid chromatography-mass spectroscopy (UHPLC-MS) and online databases. The targets of the active components and AAD-related targets were predicted by network pharmacology, and the potential targets of SLBZ against AAD were obtained. Then the core targets were recognized after Protein-Protein Interaction (PPI) analysis. Based on these, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were conducted, and the key pathway was screened. Subsequently, molecular docking was performed using Auto Dock Vina to find the key components that played a crucial role in that pathway. Molecular dynamics simulation was performed by Gromacs software to detect the binding mode. Finally, the results were confirmed by in vitro and in vivo experiments. RESULTS: A total of 66 active ingredients of SLBZ were detected by UHPLC-MS, and 128 active ingredients were screened out by network pharmacological analysis. Additionally, 935 drug targets and 1686 AAD-related targets were obtained. Seventy-eight intersected genes were selected as potential therapeutic targets and 19 genes were excavated as core targets. Enrichment analysis revealed PI3K-AKT signaling pathway was the key pathway in SLBZ against AAD. Topological analysis further revealed that JAK2, MTOR, TLR4, and SYK were the key targets affected by SLBZ on the PI3K-AKT pathway, and 52 components of SLBZ were associated with them. Molecular docking and dynamics simulation revealed strong binding affinities between MTOR and diosgenin. Subsequently, after SLBZ treatment, the expression levels of JAK2, MTOR, TLR4, and SYK were found significantly upregulated in the AAD model rats (p < 0.05). The cell experiment further validated the good binding ability between MTOR and diosgenin. CONCLUSION: We demonstrate that the therapeutic effect of SLBZ on AAD was achieved in part by inhibiting the PI3K-AKT pathway.


Assuntos
Antibacterianos , Diarreia , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Diarreia/tratamento farmacológico , Diarreia/induzido quimicamente , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Mapas de Interação de Proteínas , Simulação de Dinâmica Molecular , Camundongos
2.
J Ethnopharmacol ; 329: 118177, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604510

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY: To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS: A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS: The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION: C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.


Assuntos
Corydalis , Fibrinolíticos , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Trombose , Animais , Corydalis/química , Coelhos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/tratamento farmacológico , Extratos Vegetais/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Fibrinolíticos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Simulação de Acoplamento Molecular , Alcaloides de Berberina/farmacologia , Peróxido de Hidrogênio/toxicidade , Modelos Animais de Doenças , Carragenina , Espécies Reativas de Oxigênio/metabolismo
3.
J Ethnopharmacol ; 329: 118169, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY: We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS: UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS: A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS: Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.


Assuntos
Medicamentos de Ervas Chinesas , Células Estreladas do Fígado , Cirrose Hepática , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Tetracloreto de Carbono , Linhagem Celular
4.
Am J Chin Med ; 52(2): 433-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577825

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is the leading cause of death worldwide. Ginsenoside Rd (GRd) has cardioprotective properties but its efficacy and mechanism of action in myocardial I/R injury have not been clarified. This study investigated GRd as a potent therapeutic agent for myocardial I/R injury. Oxygen-glucose deprivation and reperfusion (OGD/R) and left anterior descending (LAD) coronary artery ligation were used to establish a myocardial I/R injury model in vitro and in vivo. In vivo, GRd significantly reduced the myocardial infarct size and markers of myocardial injury and improved the cardiac function in myocardial I/R injury mice. In vitro, GRd enhanced cell viability and protected the H9c2 rat cardiomyoblast cell line from OGD-induced injury GRd. The network pharmacology analysis predicted 48 potential targets of GRd for the treatment of myocardial I/R injury. GO and KEGG enrichment analysis indicated that the cardioprotective effects of GRd were closely related to inflammation and apoptosis mediated by the PI3K/Akt signaling pathway. Furthermore, GRd alleviated inflammation and cardiomyocyte apoptosis in vivo and inhibited OGD/R-induced apoptosis and inflammation in cardiomyocytes. GRd also increased PI3K and Akt phosphorylation, suggesting activation of the PI3K/Akt pathway, whereas LY294002, a PI3K inhibitor, blocked the GRd-induced inhibition of OGD/R-induced apoptosis and inflammation in H9c2 cells. The therapeutic effect of GRd in vivo and in vitro against myocardial I/R injury was primarily dependent on PI3K/Akt pathway activation to inhibit inflammation and cardiomyocyte apoptosis. This study provides new evidence for the use of GRd as a cardiovascular drug.


Assuntos
Ginsenosídeos , Traumatismo por Reperfusão Miocárdica , Ratos , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Apoptose , Miócitos Cardíacos/metabolismo
5.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
6.
Phytomedicine ; 128: 155539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522311

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE: The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS: Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS: Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION: Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glicólise , Camundongos Nus , Mitocôndrias , Fosforilação Oxidativa , Saponinas , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Glicólise/efeitos dos fármacos , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Vet Microbiol ; 291: 110034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432076

RESUMO

Bovine viral diarrhea virus (BVDV) has caused massive economic losses in the cattle business worldwide. Fatty acid synthase (FASN), a key enzyme of the fatty acid synthesis (FAS) pathway, has been shown to support virus replication. To investigate the role of fatty acids (FAs) in BVDV infection, we infected CD8+T lymphocytes obtained from healthy cattle with BVDV in vitro. During early cytopathic (CP) and noncytopathic (NCP) BVDV infection in CD8+ T cells, there is an increase in de novo lipid biosynthesis, resulting in elevated levels of free fatty acids (FFAs) and triglycerides (TG). BVDV infection promotes de novo lipid biosynthesis in a dose-dependent manner. Treatment with the FASN inhibitor C75 significantly reduces the phosphorylation of PI3K and AKT in BVDV-infected CD8+ T cells, while inhibition of PI3K with LY294002 decreases FASN expression. Both CP and NCP BVDV strains promote de novo fatty acid synthesis by activating the PI3K/AKT pathway. Further investigation shows that pharmacological inhibitors targeting FASN and PI3K concurrently reduce FFAs, TG levels, and ATP production, effectively inhibiting BVDV replication. Conversely, the in vitro supplementation of oleic acid (OA) to replace fatty acids successfully restored BVDV replication, underscoring the impact of abnormal de novo fatty acid metabolism on BVDV replication. Intriguingly, during BVDV infection of CD8+T cells, the use of FASN inhibitors prompted the production of IFN-α and IFN-ß, as well as the expression of interferon-stimulated genes (ISGs). Moreover, FASN inhibitors induce TBK-1 phosphorylation through the activation of RIG-1 and MDA-5, subsequently activating IRF-3 and ultimately enhancing the IFN-1 response. In conclusion, our study demonstrates that BVDV infection activates the PI3K/AKT pathway to boost de novo fatty acid synthesis, and inhibition of FASN suppresses BVDV replication by activating the RIG-1/MDA-5-dependent IFN response.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Bovinos , Animais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Vírus da Diarreia Viral Bovina/fisiologia , Linfócitos T CD8-Positivos , Ácidos Graxos , Lipídeos
8.
Gene ; 912: 148383, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493972

RESUMO

Liver cancer is one of the most lethal malignancies and sorafenib resistance is the main treatment obstacle for patients with advanced liver cancer. Developing drugs that sensitize liver cancer patients to sorafenib is of great importance. Lianhua Qingwen (LHQW), a sort of Traditional Chinese Medicine (TCM) approved by the Chinese Food and Drug Administration (CFDA), is reported to exert synergistic effects with oseltamivir against Influenza virus. However, whether LHQW could exhibit anti-liver cancer effects and enhance the efficacy of sorafenib against liver cancer have not been reported. In the present study, the potential anti-liver cancer effects of LHQW and its synergistic effects with sorafenib were investigated via applying network pharmacology, molecular docking, and in vitro experiments. An "ingredient-compound- target-liver cancer" network was constructed which included 12 ingredients, 164 compounds, and 402 targets. AKT1 was identified as the most hub gene and the PI3K/AKT pathway was revealed as the most enriched pathway. Subsequently, the molecular docking results showed that kaempferol, luteolin, and quercetin were screened as the top 3 compounds which showed the tightest binding to AKT1. Further, the in vitro experiments verified that LHQW significantly inhibited liver cancer cell proliferation and induced apoptosis. Western blot assays confirmed that LHQW could attenuate the PI3K/AKT pathway. Interestingly, LHQW showed a synergistic effect with sorafenib against liver cancer via reducing cell viability, inducing apoptosis, and down- regulating PI3K/AKT pathway. This study broadens the potential application of LHQW and provides insights for liver cancer treatment.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sorafenibe/farmacologia , Farmacologia em Rede , Neoplasias Hepáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
Chin J Integr Med ; 30(7): 608-615, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386252

RESUMO

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Traumatismo por Reperfusão Miocárdica , Miocárdio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Camundongos Endogâmicos C57BL , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transição Endotélio-Mesênquima
10.
Phytother Res ; 38(5): 2215-2233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411031

RESUMO

Osteosarcoma is a common malignant bone tumour characterised by an aggressive metastatic potential. The tumour microenvironment, particularly the M2-polarised macrophages, is crucial for tumour progression. Cucurbitacin B (CuB), a triterpenoid derivative, is recognised for its anti-inflammatory and antitumour properties. This study investigates CuB and its effect on M2 macrophage differentiation and osteosarcoma progression, aiming to contribute to new treatment strategies. In vitro, THP-1 monocytes were stimulated with PMA, IL-13 and IL-4 to induce differentiation into M2 macrophages. Additionally, the influence of CuB on the proliferation, migration and invasion of osteosarcoma cells in the context of M2 macrophages was scrutinised. Crucial signalling pathways, especially the PI3K/AKT pathway, affected by CuB were identified and validated. In vivo, the osteosarcoma model was employed to gauge the effects of CuB on tumour weight, lung metastasis, angiogenesis, cell proliferation and M2 macrophage markers. The results showed that CuB inhibited M2 macrophage differentiation, leading to reduced proliferation, migration and invasion of osteosarcoma cells. CuB manifested an inhibitory effect on the PI3K/AKT pathway during the differentiation of M2 macrophages. In mouse models, CuB markedly reduced the tumour weight and the number of lung metastases. It also reduced the expression of angiogenesis and cell proliferation markers in tumour tissues, decreased the quantity of M2 macrophages and their associated markers and pathway proteins. In conclusion, CuB impedes osteosarcoma progression by inhibiting M2 macrophage differentiation via the PI3K/AKT pathway, presenting the potential for therapeutic advancements in osteosarcoma treatment.


Assuntos
Macrófagos , Osteossarcoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Triterpenos , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Triterpenos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
11.
J Ethnopharmacol ; 326: 117912, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38387682

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer with a rising global incidence. Despite favorable prognoses, a significant recurrence rate persists. Dioscorea bulbifera L. (DBL), a traditional Chinese medicine, has been historically used for thyroid-related disorders. However, its therapeutic effects and mechanisms of action on PTC remain unclear. AIM OF THE STUDY: To explore the potential therapeutic effects, principal active components, and molecular mechanisms of DBL in the treatment of PTC through network pharmacology and molecular docking, with experimental validation conducted to corroborate these findings. MATERIALS AND METHODS: The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was utilized as a systematic tool for collecting and screening the phytochemical components of DBL, and for establishing associations between these components and molecular targets. Based on this, network data was visually processed using Cytoscape software (version 3.8.0). Concurrently, precise molecular docking studies of the principal active components of DBL and their corresponding targets were conducted using Autodock software. Additionally, PTC-related genes were selected through the GeneCards and GEO databases. We further employed the DAVID bioinformatics resources to conduct comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the intersecting genes between DBL and PTC. These analyses aid in predicting the potential therapeutic actions of DBL on PTC and its mechanisms of action. To validate these findings, corresponding in vitro experimental studies were also conducted. RESULTS: In this investigation, 14 bioactive compounds of DBL and 195 corresponding molecular targets were identified, with 127 common targets shared between DBL and PTC. Molecular docking revealed strong binding affinities between major bioactive compounds and target proteins. GO enrichment analysis unveiled key processes involved in DBL's action. KEGG analysis highlighted DBL's modulation of the PI3K/AKT signaling pathway. Experimental outcomes demonstrated DBL's potential in inhibiting PTC cell proliferation and migration, suppressing PI3K/AKT pathway activation, and promoting ferroptosis. CONCLUSION: In conclusion, DBL offers a multifaceted therapeutic approach for PTC, targeting multiple molecular entities and influencing diverse biological pathways. Network pharmacology and molecular docking shed light on DBL's potential utility in PTC treatment, substantiated by experimental validation. This study contributes valuable insights into using DBL as a promising therapeutic agent for PTC management.


Assuntos
Dioscorea , Medicamentos de Ervas Chinesas , Ferroptose , Neoplasias da Glândula Tireoide , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/genética , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
12.
J Inflamm Res ; 17: 853-863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348278

RESUMO

Background: Xijiao Dihuang decoction (XJDHT), a traditional Chinese medicine, is widely used to treat patients with sepsis. However, the mechanisms underlying the effects of XJDHT on cardiac dysfunction have yet to be fully elucidated. The present study evaluated the potential utility of XJDHT in protecting against sepsis-induced cardiac dysfunction and myocardial injury. Methods: The mice were randomly divided into 3 groups and administered Lipopolysaccharide (LPS,10 mg/kg) or equivalent saline solution (control) and treated with XJDHT (10 g/kg/day) or saline by gavage for 72 hours. XJDHT was dissolved in 0.9% sodium chloride and administered at 200 µL per mouse. Transthoracic echocardiography, RNA-seq, TUNEL assays and hematoxylin and eosin (H&E) staining of cardiac tissues were performed. Results: Treatment with XJDHT significantly enhanced myocardial function and attenuated pathological change, infiltration of inflammatory cells, levels of TNF-α, IL-1ß and expression of TLR4 and NF-κB in mice with sepsis. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 531 differentially expressed genes and multiple enriched signaling pathways including the PI3K/AKT pathway. Further, XJDHT attenuated cardiac apoptosis and decreased Bax protein expression while increasing protein levels of Bcl-2, PI3K, and p-AKT in cardiac tissues of mice with sepsis. Conclusion: In summary, XJDHT improves cardiac function in a murine model of sepsis by attenuating cardiac inflammation and apoptosis via suppressing the TLR4/NF-κB pathway and activating the PI3K/AKT pathway.

13.
Br J Nutr ; 131(1): 27-40, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37492950

RESUMO

An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 ß (gs3kß) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Carpas/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Peixes/genética , Dieta/veterinária , Suplementos Nutricionais/análise , RNA Mensageiro/metabolismo , Carboidratos , Glucose , Ração Animal/análise , Imunidade Inata
14.
J Ethnopharmacol ; 322: 117668, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159829

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mailuo shutong pill (MLST) has been widely used in clinical treatment of superficial thrombotic phlebitis (STP). Nevertheless, the major active components of MLST and the mechanism of synergistic action have not been reported. AIM OF THE STUDY: The present study aimed to evaluate the improving effects and the underlying mechanism of MLST on mannitol-induced STP in rabbits. MATERIAL AND METHODS: In this study, Ultrahigh-performance liquid chromatography electrospray ionization quadrupole-exactive orbitrap mass spectrometry (UHPLC-ESI-Q-Exactive-Orbitrap-MS) was used to analyze and identify the chemical composition of MLST and the prototype components absorbed into the blood. Then, according to the prototype components in serum, the targets and mechanisms of MLST were explored by applying network pharmacology. The rabbit model of STP was established by injecting 20% mannitol into bilateral auricular vein. The pathological changes of rabbit ear tissues, inflammatory factors, coagulation function and hemorheology were detected. In addition, molecular docking verified the interaction between the main active ingredient and the key target. Finally, the PI3K/AKT pathway and its regulated downstream pathways were verified by Western blot. RESULTS: A total of 96 MLST components and 53 prototypical components absorbed into the blood were successfully identified. Based on network pharmacology, PI3K/AKT pathway and 10 chemical components closely related to this pathway were obtained. Hematoxylin-eosin (HE) staining results indicated that MLST effectively improved of the pathological damage of ear tissues. MLST decreased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and C-reactive protein (CRP). The expression of platelets (PLT) and fibrinogen concentration (FIB) was decreased, while prothrombin time (PT) and activated partial thromboplastin time (APTT) were prolonged. In addition, the plasma viscosity and whole blood viscosity in the MLST groups were significantly decreased. The more important discovery was that the expressions of P-PI3K, VEGF, P-AKT, P-IκB-α, P-NF-κB, NLRP3, ASC, Cleaved IL-1ß and Cleaved Caspase-1 were effectively reversed after treatment with MLST. CONCLUSIONS: This study comprehensively analyzed and characterized the chemical composition of MLST and the prototypical components absorbed into the blood. This study strongly confirmed the pharmacodynamic effect of MLST on STP. More importantly, this pharmacodynamic effect was achieved through inhibition of the PI3K/AKT pathway and its regulated NF-κB and NLRP3 pathways.


Assuntos
Medicamentos de Ervas Chinesas , Tromboflebite , Animais , Coelhos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Simulação de Acoplamento Molecular , Tipagem de Sequências Multilocus , NF-kappa B , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Manitol , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
15.
Bioorg Med Chem Lett ; 97: 129192, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813052

RESUMO

To investigate the renal protective effects of the polysaccharide LEP-1a and derivatives of selenium (SeLEP-1a) from Lachnum YM38, cisplatin (CP) was used to establish an acute kidney model. LEP-1a and SeLEP-1a could effectively reverse the decrease in renal index and improved renal oxidative stress. LEP-1a and SeLEP-1a significantly reduced the contents of the inflammatory cytokines. They could inhibit the release of cyclooxygenase 2 (COX-2) and nitric oxide synthase (iNOS) and increase the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). At the same time, the PCR results indicated that SeLEP-1a could significantly inhibit the mRNA expression levels of toll-like receptor 4 (TLR4), nuclear factor-kB (NF-κB) p65 and inhibitor of kappa B-alpha (IκBα). Western blot analysis showed that LEP-1a and SeLEP-1a significantly downregulated the expression levels of Bcl-2-associated X protein (Bax) and cleaved caspase-3 and upregulated phosphatidylinositol 3-kinase (p-PI3K), protein kinase B (p-Akt) and B-cell lymphoma 2 (Bcl-2) protein expression levels in the kidney. LEP-1a and SeLEP-1a could improve CP-induced acute kidney injury by regulating the oxidative stress response, NF-κB-mediated inflammation and the PI3K/Akt-mediated apoptosis signalling pathway.


Assuntos
Injúria Renal Aguda , Polissacarídeos , Selênio , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Cisplatino/farmacologia , Cisplatino/toxicidade , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Compostos de Organossilício/metabolismo , Compostos de Organossilício/farmacologia
16.
Cancer Biol Ther ; 25(1): 2284849, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38051132

RESUMO

OBJECTIVE: This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS: GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 µg/mL). AGS cells treated with 200 µg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS: RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION: RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.


Assuntos
Ferroptose , Panax , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Camundongos Nus , Proliferação de Células , Panax/metabolismo , Linhagem Celular Tumoral
17.
Anim Sci J ; 94(1): e13891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088251

RESUMO

This experiment was conducted to investigate the effects of magnolol on the oxidative parameters and jejunum injury induced by diquat in broiler chickens. This test adopts a 2 × 2 factors design, a total of 288 one-day-old male AA broiler chicks randomly allocated to four groups, consisting of six replicates of 12 birds each, which was then denoted as CON group, diquat (DIQ) group (16 mg/kg BW diquat was injected into birds at the age of 21 days), magnolol (MAG) group (basic bird diet supplemented with 300 mg/kg magnolol), and MAG + DIQ group. At 21 days of age, broilers in the DIQ group and the MAG + DIQ group were intraperitoneally injected with 16 mg/kg BW diquat. Results showed that diet supplementing with MAG could alleviate the decrease of ADG to a certain extent after exposure to DIQ. Addition of magnolol to the diet alleviated the decrease of ADG during injection, antioxidant enzymes, and gene expression and increased the markers of oxidative damage induced by diquat induction. Magnolol supplement reversed the increase of apoptotic cells in the diquat-induced chicken jejunum. RNA sequencing showed that PI3K-Akt, calcium, and NF-kappa B signaling pathways were the main enrichment pathways between the DIQ group and the MAG + DIQ group. Our findings revealed that magnolol may improve antioxidant enzyme activity and expression of related genes through the PI3K-Akt pathway to alleviate oxidative stress.


Assuntos
Antioxidantes , Galinhas , Animais , Masculino , Antioxidantes/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Diquat/efeitos adversos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Ann Transl Med ; 11(11): 382, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37970593

RESUMO

Background: Radix Salviae (Danshen)-Angelicae Sinensis Radix (Danggui)-Lycii Fructus (Gouqizi)-Rehmanniae Radix Praeparata (Shudihuang)-Ginkgo Folium (Yinxinye) (RALRG) are commonly used herbs in China that have shown positive effects on retinitis pigmentosa (RP). However, little research has been performed on the impact of RALRG and RP. Herein, this study aimed to predict the mechanism and potential components of RALRG in treating RP. Methods: The ingredients of RALRG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP); the potential targets of RP and RALRG were obtained from TCMSP, GeneCards, and the Online Mendelian Inheritance in Man (OMIM) database. A protein-protein interaction (PPI) network was constructed to visualize PPIs. The functional enrichment was performed with the R program. A visual RALRG-RP-pathway pharmacology network was established by Cytoscape 3.9.1. Molecular docking was used to perform molecular docking and calculate the binding affinity. Results: A total of 132 effective active ingredients in RALRG with 248 target genes were screened; 92 intersection target genes were acquired from the intersection of RP- and RALRG-related genes. Gene Ontology (GO) enrichment indicated that these intersection targets were mainly involved in oxidative stress, metal ion response, and chemical stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the PI3K-AKT, cellular senescence, and MAPK signaling pathways were closely related to the therapy of RP. In addition, a potential pharmacology network for RALRG-RP-pathway was constructed. AKT1 and JUN were considered the primary targets. Luteolin, quercetin, and kaempferol were identified as the vital three active ingredients. Conclusions: RALRG was found to be the main regulator for oxidative stress and PI3K/AKT signaling pathways. Luteolin, quercetin, and kaempferol were three promising complementary ingredients for RP treatment. This study may provide a theoretical basis for applying RALRG to screen potential drugs for RP.

19.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003364

RESUMO

Mammary fat plays a profound role in the postnatal development of mammary glands. However, the specific types (white, brown, or beige) of adipocytes in mammary fat and their potential regulatory effects on modulating mammary gland development remain poorly understood. This study aimed to investigate the role of the browning of mammary fat on pubertal mammary gland development and explore the underlying mechanisms. Thus, the mammary gland development and the serum lipid profile were evaluated in mice treated with CL316243, a ß3-adrenoceptor agonist, to induce mammary fat browning. In addition, the proliferation of HC11 cells co-cultured with brown adipocytes or treated with the altered serum lipid metabolite was determined. Our results showed that the browning of mammary fat by injection of CL316243 suppressed the pubertal development of mice mammary glands, accompanied by the significant elevation of serum dioleoylphosphocholine (DOPC). In addition, the proliferation of HC11 was repressed when co-cultured with brown adipocytes or treated with DOPC. Furthermore, DOPC suppressed the activation of the PI3K/Akt pathway, while the DOPC-inhibited HC11 proliferation was reversed by SC79, an Akt activator, suggesting the involvement of the PI3K/Akt pathway in the DOPC-inhibited proliferation of HC11. Together, the browning of mammary fat suppressed the development of the pubertal mammary gland, which was associated with the elevated serum DOPC and the inhibition of the PI3K/Akt pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Adipócitos Marrons/metabolismo , Lecitinas/farmacologia
20.
Brain Res Bull ; 203: 110772, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37793596

RESUMO

BACKGROUND: Rhizoma Gastrodiae is a highly valuable traditional Chinese medicine and functional health food that has been used in China to treat neurological disorders for thousands of years. Rhizoma Gastrodiae contains various of biological activities, such as antioxidative, neuroprotective, learning improvement, anxiolytic, and antidepressant effects. However, no studies have been conducted to explore the effects of the protein components in Rhizoma Gastrodiae (GEPS) and its potential protective effects against ischemic stroke.Our main goal was to investigate the effects of GEPS on ischemia/reperfusion (I/R) injury and its possible mechanisms. METHODS: A middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia mouse model and an oxygen-glucose deprivation (OGD/R) injury model in HT22 cells were established. A neurobehavioral test was performed 24 h after MCAO, and brain infarction was measured. A Morris water maze experiment was conducted on Day 14 after reperfusion in mice. Hematoxylin and eosin (HE) and TUNEL staining were performed to assess apoptotic neuronal death. Immunohistochemical analysis was used to detect BDNF and GAP43 expression. The content of SOD, MDA, GSH-PX and ROS were detected. The protein expression was analyzed using Western blotting. Cell viability was determined by MTT assay. Cell apoptosis was examined by flow cytometry. RESULTS: GEPS reduced apoptosis, decreased cerebral infarction, improved neurological defects, and ameliorated oxidative stress in the ischemic penumbra. In addition, GEPS increased the expression of BDNF and GA43 in the penumbra. Mechanistically, GEPS counteracted MCAO-induced PI3K/AKT inhibition and activation of MAPK signaling pathways. CONCLUSION: GEPS has a clear neuroprotective effect on I/R injury, and its mechanism may be linked to the PI3K/AKT and MAPK signaling pathways.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA