Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 18855-18866, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577763

RESUMO

Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.

2.
Adv Healthc Mater ; 13(19): e2400201, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519419

RESUMO

Photothermal agents (PTAs) with desirable near-infrared (NIR) absorption and excellent photothermal conversion efficiency (PCE) are ideal candidates for cancer treatment. However, numerous PTAs still require high-intensity and long-duration laser irradiation to completely ablate the tumor during the photothermal therapy (PTT) process, resulting in light damage to healthy skin and tissue as well as limiting their biomedical applications. Integrating intense NIR absorption and high PCE into a single small-molecule PTA is an important prerequisite for realizing efficient PTT, but is a serious challenge. Herein, a series of donor-acceptor type PTAs (CC1 to NC4) are designed through a molecular engineering strategy. Theoretical calculations and experimental results show that the NIR absorption and photothermal effect from CC1 to NC4 are significantly enhanced as expected. Notably, NC4 nanoparticles exhibit intense NIR absorption, superhigh PCE of up to 88.9% for PTT, photoacoustic imaging and photothermal imaging, and effective reactive oxygen species generation for photodynamic therapy (PDT). The superior PTT/PDT synergistic phototherapeutic efficacy is well demonstrated by the complete elimination of tumor in vivo upon one-time, low-intensity, and short-duration laser irradiation (808 nm, 330 mW cm-2, and 3 min). This work provides a valuable guideline for rational design of PTAs for cancer phototherapy.


Assuntos
Raios Infravermelhos , Animais , Camundongos , Humanos , Terapia Fototérmica/métodos , Fototerapia/métodos , Nanopartículas/química , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Neoplasias/terapia , Neoplasias/diagnóstico por imagem
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123668, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029599

RESUMO

Second near-infrared (NIR-II,1000 âˆ¼ 1700 nm) therapeutic window presents an increased tissue penetration and elevated maximal permissible exposure in the application of photothermal therapy (PTT). However, the lack of NIR-II photothermal conversion agents (PCAs) limit their further development. In this work, we rationally designed and successfully developed three novel indolium-like heptamethine cyanine dyes (NFs) by installing N,N-diethylamino on the terminal ends of a conjugated polyene backbone and replacing the middle chlorine atom with o-mercapto benzoic acid and p-mercapto benzoic acid. Notably, NF2 with stronger rotating group encapsulated in organic nanoparticles (NF2 NPs) exhibited high photothermal conversion efficiency (PCE), which could come up to (61.3 %). Then we conducted serial experiments to further investigate PTT capability of NF2 NPs 4 T1 cell line and nude mice bearing 4 T1 tumor. As expected, the resulting NF2 NPs presented the excellent photothermal conversion ability and superb PTT effect both in vivo and in vitro. This study will inspire more work for future design and clinical applications of NIR-II therapeutic agents.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia , Camundongos Nus , Neoplasias/tratamento farmacológico , Ácido Benzoico , Linhagem Celular Tumoral
4.
ACS Appl Mater Interfaces ; 15(48): 56314-56327, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983087

RESUMO

Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.


Assuntos
Nanopartículas , Terapia Fototérmica , Fármacos Fotossensibilizantes , Polímeros/farmacologia , Fluorescência , Fototerapia
5.
ACS Nano ; 17(20): 20024-20033, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831502

RESUMO

Hierarchical multiscale wrinkling nanostructures have shown great promise for many biomedical applications, such as cancer diagnosis and therapy. However, synthesizing these materials with precise control remains challenging. Here, we report a sulfur doping strategy to synthesize sub-1 nm NiFe hydroxide ultrathin nanosheets (S-NiFe HUNs). The introduction of sulfur affects the reduction of the band gap and the adjustment of the electronic structure, thereby improving the light absorption ability of the S-NiFe HUNs. Additionally, S-NiFe HUNs show a multilayered nanobowl-like structure that enables multiple reflections of incident light inside the nanostructure, which improved the utilization of incident light and achieved high photothermal conversion. As a result, the as-prepared product with hydrophilic modification (dS-NiFe HUNs) demonstrated enhanced tumor-killing ability in vitro. In a mouse model of breast cancer, dS-NiFe HUNs combined with near-infrared light irradiation greatly inhibited tumor growth and prolonged the mice survival. Altogether, our study demonstrates the great potential of dS-NiFe HUNs for cancer photothermal therapy applications.


Assuntos
Nanoestruturas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Neoplasias/terapia , Fototerapia , Nanoestruturas/química , Enxofre
6.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851535

RESUMO

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Assuntos
Neoplasias Ósseas , Nanoporos , Osteossarcoma , Humanos , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Osteossarcoma/tratamento farmacológico , Fototerapia , Linhagem Celular Tumoral
7.
Small ; 19(9): e2205853, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526435

RESUMO

A booming demand for wearable electronic devices urges the development of multifunctional smart fabrics. However, it is still facing a challenge to fabricate multifunctional smart fabrics with satisfactory mechanical property, excellent Joule heating performance, highly efficient photothermal conversion, outstanding electromagnetic shielding effectiveness, and superior anti-bacterial capability. Here, a MoSe2 @MXene heterostructure-based multifunctional cellulose fabric is fabricated by depositing MXene nanosheets onto cellulose fabric followed by a facile hydrothermal method to grow MoSe2 nanoflakes on MXene layers. A low-voltage Joule heating therapy platform with rapid Joule heating response (up to 230 °C in 25 s at a supplied voltage of 4 V) and stable performance under repeated bending cycles (up to 1000 cycles) is realized. Besides, the multifunctional fabric also exhibits excellent photothermal performance (up to 130 °C upon irradiation for 25 s with a light intensity of 400 mW cm-2 ), outstanding electromagnetic interference shielding effectiveness (37 dB), and excellent antibacterial performances (>90% anti-bacterial rate toward Escherichia coli, Bacillus subtilis, and Staphylococcus aureus). This work offers an efficient avenue to fabricate multifunctional wearable thermal therapy devices for mobile healthcare and personal thermal management.


Assuntos
Hipertermia Induzida , Antibacterianos/farmacologia , Celulose , Escherichia coli
8.
ACS Appl Mater Interfaces ; 15(1): 236-248, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538335

RESUMO

Cancers are among the leading causes of death currently. Conventional radiotherapy and chemotherapy are of limited use in the treatment of some tumors due to their high toxicity and drug resistance. Plasma photothermal therapy has attracted extensive attention for the treatment of tumors due to photothermal properties of plasmonic nanoparticles, such as gold (Au) nanoparticles, to achieve local hyperthermia with low toxicity and high efficiency. Herein, we report a kind of special black noble-metal core-shell nanostructure, with silver (Ag) nanocubes as the core and amino acid-encoded highly branched Au nanorods as the shells (l-CAg@Au and d-CAg@Au). The proposed growth of l-CAg@Au and d-CAg@Au nanocomposites was an amino acid-encoded Stranski-Krastanov mode. Both l-CAg@Au and d-CAg@Au exhibited outstanding photothermal conversion compared to the core-shell structure without amino acids (Ag@Au). d-CAg@Au possessed the best photothermal conversion efficiency (87.28%) among the composite nanoparticles. The antitumor therapeutic efficacy of as-prepared samples was evaluated in vitro and in vivo, and apoptosis analysis was done via flow cytometry. This work reports novel insights for the preparation of special bimetallic branched structures and broadens the application of metal nanomaterials in photothermal tumor therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Prata/química , Ouro/química , Aminoácidos , Fototerapia , Neoplasias/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química
9.
J Hazard Mater ; 443(Pt A): 130193, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265385

RESUMO

Rapid and effective removal of highly viscous oil spills from the sea remains a great challenge globally. Superhydrophobic materials are attractive candidates for handling oil spills, but they are restrained to recover oils with low viscosity exclusively. Herein, we report a novel polypyrrole wrapped superhydrophobic fibrous network using cross-shaped polyester fibers as starting blocks. The polypyrrole coating enables the absorbent to convert light to heat, ensuring that the viscosity of heavy oils in the proximity can be easily controlled. In the meanwhile, the special structure of the starting fibers initiates Concus Finn (CFin) capillary allowing instant oil transport in the network. When the absorbent is exposed to light oils (0-500 mPa.s), the oils can be transported instantly via CFin capillary. Interestingly, under synergistic effect of light-to-heat conversion and CFin capillary, a drawing-sticking crude oil strip (105 mPa.s) is sucked instantly against gravity by the absorbent. The absorbent is successfully applied to efficiently separate both oil/water mixtures and oil/water emulsions (efficiency > 99%). Such absorbent can absorb 62.99-74.23 g/g light oils on average and up to 123.3 g/g crude oil under 0-2 sun illumination, holding a huge potential in managing oil spills.


Assuntos
Petróleo , Petróleo/análise , Polímeros , Viscosidade , Interações Hidrofóbicas e Hidrofílicas , Pirróis , Óleos/química
10.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233082

RESUMO

Molecular photothermal conversion materials are recently attracting increasing attention for phototherapy applications. Herein we investigate the excitation and de-excitation processes of a photothermal molecule (C1TI) that is among the recently developed class of small-molecule-based photothermal imines with superb photothermal conversion efficiencies (PTCEs) up to 90% and a molecule (M2) that is constructed by replacing the amino group of C1TI with an H atom, via excited-state dynamics simulations based on the time-dependent density functional theory (TD-DFT). The simulations reveal fast (<150 fs of average time) nonradiative decays of the lowest excited singlet (S1) state to a conical intersection (CI) with the ground (S0) state in high yields (C1TI: 93.9% and M2: 87.1%). The fast decays, driven by C=N bond rotation to a perpendicular structural configuration, are found to be barrierless. The slight structural difference between C1TI and M2 leads to drastically different S0-S1 energy surfaces, especially M2 features a relatively much lower CI (0.8 eV in energy) and much more decay energy (1.0 eV) to approach the CI. This work provides insights into the de-excitation mechanisms and the performance tuning of C=N enabled photothermal materials.


Assuntos
Iminas , Teoria da Densidade Funcional
11.
ACS Appl Mater Interfaces ; 14(36): 40513-40521, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049895

RESUMO

Rh is a noble metal introduced in bioapplications, including diagnosis and therapy, in addition to its consolidated utilization in organic catalysis and electrocatalysis. Herein, we designed the synthesis of highly crystalline Rh nanocrystal-decorated Rh-Te nanorods (RhTeNRs) through galvanic replacement of sacrificial Te nanorod (TeNR) templates and subsequent polyol regrowth. The obtained RhTeNRs showed excellent colloidal stability and efficient heat dissipation and photocatalytic activity under various laser irradiation wavelengths. Based on the confirmed biocompatibility, RhTeNRs were introduced into in vitro and in vivo cancer phototherapies. The results confirmed the selective physical death of cancer cells in the local area through laser irradiation. While chemotherapy does not guarantee successful treatment due to side effects and resistance, phototherapy using heat and reactive oxygen species generation of RhTeNRs induces physical death.


Assuntos
Nanotubos , Neoplasias , Ródio , Animais , Camundongos , Camundongos Endogâmicos BALB C , Nanotubos/química , Neoplasias/terapia , Fototerapia , Polímeros , Telúrio
12.
Elife ; 112022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111780

RESUMO

Background: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically carry a dismal prognosis. Given the insensitivity of these tumors to traditional chemotherapy and the absence of effective targeted drugs, new therapeutic strategies are urgently needed. Photothermal therapy (PTT) including near-infrared laser at the third biowindow (NIR-III) has demonstrated significant potential in cancer theranostics due to its minimally invasive nature and excellent therapeutic outcomes. However, the passive utilization of photothermal agents (PTAs) with poor target specificity and biocompatibility substantially hinders the clinical translation and application of this method. Methods: We evaluated the efficiency, safety, and underlying mechanisms of NIR-III without PTAs in the treatment of MPNSTs. The photothermal performance and tissue penetration capability of the NIR-III laser were evaluated in human MPNST cell lines using CCK-8, Calcein-AM and propidium iodide (PI) staining, and Annexin V-FITC/PI assays. The tumor xenografted mice model was used for evaluating the efficacy and biosafety of NIR-III photothermal ablation. Finally, the underlying mechanisms of NIR-III treatment, explored by whole-transcriptome sequencing, are further verified by RT-qPCR. Results: We found that although the NIR-III photothermal treatment efficiency varied among individuals, which was possibly influenced by different endoplasmic reticulum stress responses, the expected antineoplastic effect was ultimately achieved after adjustment of the power density and radiation duration. Conclusions: The present study provides an intriguing noninvasive therapy for MPNSTs that accelerates the clinical translation of PTT while avoiding the biocompatibility issues arising from PTAs. Funding: This work was supported by grants from National Natural Science Foundation of China (82102344; 82172228); Shanghai Rising Star Program supported by Science and Technology Commission of Shanghai Municipality (20QA1405600); Natural Science Foundation of Shanghai (22ZR1422300); Science and Technology Commission of Shanghai Municipality (19JC1413) ; "Chenguang Program" supported by Shanghai Education Development Foundation (SHEDF) (19CG18); Shanghai Municipal Key Clinical Specialty (shslczdzk00901); Innovative research team of high-level local universities in Shanghai (SSMU-ZDCX20180700).


Assuntos
Antineoplásicos , Hipertermia Induzida , Neoplasias , Neurofibrossarcoma , Animais , Linhagem Celular Tumoral , China , Humanos , Hipertermia Induzida/métodos , Camundongos , Neoplasias/terapia , Neurofibrossarcoma/terapia , Fototerapia/métodos , Propídio , Sincalida
13.
Regen Biomater ; 9: rbac036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936552

RESUMO

The recently emerging bismuth oxyhalide (BiOX) nanomaterials are promising indirect band gap photosensitizer for ultraviolet (UV) light-triggered phototherapy due to their unique layered nanosheet structure. However, the low absorption and poor photothermal conversion efficiency have always impeded their further applications in cancer clinical therapy. Herein, BiOCl rich in oxygen vacancies has been reported to have full-spectrum absorption properties, making it possible to achieve photothermal property under near-infrared laser. Under 808 nm irradiation, the photothermal conversion efficiency of black BiOCl nanosheets (BBNs) is up to 40%. BBNs@PEG can effectively clear primary subcutaneous tumors and prevent recurrence, achieving good synergistic treatment effect. These results not only broke the limitation of UV on the BiOCl material and provided a good template for other semiconductor materials, but also represent a promising approach to fabricate BBN@PEG a novel, potent and multifunctional theranostic platform for precise photothermal therapy and prognostic evaluation.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36029071

RESUMO

BACKGROUND: Metallic nanoparticles (NPs), in general, are able, due to the high surface area per unit volume, to absorb the maximum incoming light flux through the vicinity of plasmonic structures and then provide local heating. Thus, silver (Ag) NPs has been used to generate heat and increase the temperature of water from solar radiation energy. The optimal plasmonic heating generation can be obtained as soon as the wavelength of the light source is close to the plasmonic resonance wavelength of Ag NPs. OBJECTIVE: Ag NPs have been fabricated through a straightforward, cheap, as well as environmentally friendly approach. In this study, Salix babylonica L., weeping willow leaf extract has been utilized as a reducing, capping, and stabilizing agent, without using any other toxic materials. The importance of this study lies in the generation of hot electrons, which can be obtained by collecting the solar spectrum near the infrared and infrared regions, which cannot be obtained by the conventional photocatalytic devices. METHODS: Numerous characterization techniques such as; UV-Vis, FT-IR spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis were used to study the optical, chemical, structural, morphological, properties of the Ag NPs. RESULTS: The impact of pH on the properties of Ag NPs and their performance to generate heat during solar irradiation have been investigated intensively. This study showed that the synthesized Ag NPs with pH value 12 is the optimum condition and can increase the temperature of water dramatically. CONCLUSION: An evaluation of the current patents displays that the field of green synthesis Ag NPs utilizing plant extracts is a vital field and produces rather stable, safe and effective Ag NPs. The novelty of this patent is that Ag NPs can be synthesized from a one-pot reaction without using any exterior stabilizing and reducing agent, which is not conceivable by means of the existing processes. This study, also, is rare and distinctive, and it demonstrates that even a slight quantity of the Ag NPs is significantly raising the temperature of water effectively.

15.
J Hazard Mater ; 440: 129799, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027746

RESUMO

Developing self-heating sorbents for rapid clean-up of viscous oil spills by using clean solar energy is attracting attention. Still, simple and scalable fabrication approaches of solar-heating sorbents remain challenging. Herein, a facile and practical modification strategy was presented to develop a solar-heating modified melamine sponge (rGO/CNT/MS) by dip-coating layer-by-layer (LBL) electrostatic assembly of GO and CNT with opposite charges onto MS skeleton followed by thermal reduction, without any complicated microfabrication and hydrophobic modification processes. Based on the intercalation of CNT into rGO layers and strong conjugation/hyperconjugation synergy of rGO and CNT, the light sorption ability, photothermal conversion, hydrophobicity and mechanical properties of the rGO/CNT/MS sorbent were further improved compared to rGO/MS and CNT/MS. The surface temperature could reach 75 â„ƒ in 100 s under 1 sun radiation (1 kW m-2), which would effectively absorb crude oil by in-situ sunlight-heating to reduce its viscosity. The sorption speed increased by about 30 times compared with no sunlight irradiation, and the continuous sorption capacity was up to 1.71 g/cm2 at 610 s driven by pump force. The easily-prepared solar-assisted rGO/CNT/MS with high photothermal performance, corrosion resistance, mechanical compressibility, coating firmness and oil sorption ability showed huge potential application in oil spill recovery.


Assuntos
Petróleo , Grafite , Calefação , Interações Hidrofóbicas e Hidrofílicas , Triazinas , Viscosidade , Água/química
16.
Adv Colloid Interface Sci ; 308: 102753, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007283

RESUMO

Photothermal therapy (PTT) is a promising alternative therapy for benign or even malignant tumors. To improve the selective heating of tumor cells, target-specific photothermal conversion agents are often included, especially nanoparticles. Meanwhile, some indirect methods by manipulating the radiation and heat delivery are also adopted. Therefore, to gain a clear understanding of the mechanism, and to improve the controllability of PTT, a few issues need to be clarified, including bioheat and radiation transfer, localized and collective heating of nanoparticles, etc. In this review, we provide an introduction to the typical bioheat transfer and radiation transfer models along with the dynamic thermophysical properties of biological tissue. On this basis, we reviewed the most recent advances in the temperature control methods in PTT from macroscale to nanoscale. Most importantly, a comprehensive introduction of the localized and collective heating effects of nanoparticle clusters is provided to give a clear insight into the mechanism for PPT from the microscale and nanoscale point of view.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Fototerapia , Terapia Fototérmica , Temperatura
17.
Int J Pharm ; 625: 122082, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934168

RESUMO

Gold nanoparticles are a kind of good photothermal agents. However, gold nanoparticle photothermal agents have low photothermal conversion efficiency and low tumor inhibiting ability. To overcome these problems, polymyxin E (PE) biomineralized and doxorubicin-loaded gold nanoflowers (DOX-SH@AuNFs) nanodrug was synthesized by the green synthesis method using the biological antimicrobial peptide PE as a stabilizer and grower of crystal seed, and doxorubicin-thiol (DOX-SH) was further loaded on the gold nanoparticles through the Au-S bond. The final DOX-SH@AuNFs displayed a wide absorption band in the UV-Vis spectra, and their photothermal conversion efficiency was 33.9%. Furthermore, the inhibition rate of DOX-SH@AuNFs on A549 cells was as high as 80.1% under the irradiation of near-infrared light at 808 nm. The tumor inhibition rate of DOX-SH@AuNFs was as high as 87.81% in vivo experiments. The high tumor suppression rate was attributed to the high photothermal conversion ability of DOX-SH@AuNFs and the delivery of doxorubicin. Taken together, the method of preparing DOX-SH@AuNFs provides a new idea for the treatment of cancer by photothermal therapy and chemotherapy synergistic system.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Linhagem Celular Tumoral , Colistina , Doxorrubicina , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , Fototerapia , Terapia Fototérmica
18.
Lasers Med Sci ; 37(8): 3269-3277, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35902456

RESUMO

The 1064 nm Nd:YAG laser shows a good prospect for the treatment of port-wine stain (PWS), but it is necessary to enhance the blood absorption to laser energy by exogenous chromophore. Owing to the conjunction effect of local surface plasmon resonance (LSPR) by gold nanoparticle and drug delivery as well as lumen blockage abilities by liposome, liposome@Au core-shell nanoparticles are used as exogenous chromophore, and the efficiency of photothermal therapy is studied systematically. In this work, theoretical simulations were conducted to investigate the electric field and solid heat conduction of liposome@Au core-shell nanoparticles with various size and particles distance, aiming to achieve maximum photothermal conversion efficiency during the laser irradiation. Thereafter, liposome@Au core-shell nanoparticles with optimal size and structure were prepared, and in vivo experiments were conducted to evaluate the thermal damage of blood vessels enhanced by liposome@Au core-shell nanoparticles. Theoretical results imply that maximum temperature rise (167 K) is obtained when radius is 45 nm and shell thickness is 5 nm with distance of 4 nm. Liposome@Au core-shell nanoparticles were prepared with diameter of 101 nm and shell thickness of 5 nm according to the finite element simulation of electric field and solid heat conduction. When the molar ratio of chloroauric acid to phospholipid is 2.25, the LSPR absorption peak is about 981 nm, which is close to the wavelength of Nd:YAG laser. In vivo experiments show that injecting liposome@Au core-shell nanoparticles into the blood vessels can effectively reduce the number of laser pulses and the corresponding energy density required for obvious vasoconstriction.


Assuntos
Dermatologia , Hipertermia Induzida , Nanopartículas Metálicas , Ouro/química , Lasers , Lipossomos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Fosfolipídeos
19.
ACS Appl Mater Interfaces ; 14(25): 28570-28580, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35726862

RESUMO

Due to the strong and tunable photothermal effect, metallic nanoparticles are of enormous interest in light-activated biomedical applications, such as photoacoustic imaging (PAI) and photothermal therapy (PTT). However, the photothermal conversion efficiency (PCE) of existing metallic photothermal agents is still unsatisfactory. Herein, we develop an efficient photothermal theranostic agent based on a gold nanostar@polyaniline core-shell nanocomposite with high PCE for PAI-guided PTT at a low dosage. After optimizing the relative composition of polyaniline (PANI) and gold nanostars (AuNSs), this nanocomposite eventually empowers an outstanding PCE of up to 78.6%, which is much better than AuNSs or PANI alone and most of the existing photothermal theranostic agents. Besides, the nanocomposite can act as a targeted probe for tumors by hyaluronic acid (HA) modification without compromising the photothermal performance. The obtained nanoprobes named AuNSPHs exhibit promising biocompatibility and great performance of PAI-guided PTT to treat triple-negative breast cancer both in vitro and in vivo. More importantly, a single injection of AuNSPHs significantly suppresses tumor growth with a low dosage of Au (0.095 mg/kg), which is attributed to the high PCE of AuNSPHs. Taking advantage of the exhilarating photothermal conversion ability, this theranostic agent can safely potentiate the antitumor therapeutic efficacy of laser-induced ablation and holds great potential for future medical applications.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Compostos de Anilina , Ouro/farmacologia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica/métodos
20.
Drug Deliv ; 29(1): 1608-1619, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612320

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) have attracted research interest for their noninvasive nature and selective treatment of tumor tissues. They are effective through the generation of reactive oxygen species (ROS) or heat. Nevertheless, several problems, including low bioavailability and long-lasting cutaneous photosensitivity, have limited their clinical application. In this study, we reported an in situ self-assembly strategy that could improve various biological properties of the photosensitizer in vivo. A photosensitizer connected to a receptor-mediated smart peptide can self-assemble into nanoparticles (NPs) under the force of hydrophobic interaction and then transform into a nanofibrillar network after attaching to the tumor cell surface with the help of the ß-sheet-forming peptide KLVFF. The supramolecular structural changes deeply affected the PDT and PTT properties of the photosensitizer on tumors. After being aggregated into the nanostructure, the water solubility and targeting ability of the photosensitizer was ameliorated. Moreover, the improvement of the photothermal conversion efficiency, ROS generation, and tumor retention followed the formation of nanofibrils (NFs). This self-assembly strategy showed the ability of supramolecular nanofibrils to improve the bioavailability of photosensitizers, which provides a new potential treatment avenue for various cancer therapies.


Assuntos
Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Clorofila/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Humanos , Peptídeos/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA