Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 209: 108533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520967

RESUMO

Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 µM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.


Assuntos
Acetatos , Ciclopentanos , Oxilipinas , Plantago , Selênio , Selênio/farmacologia , Selênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantago/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Polifenóis/metabolismo , Hormônios/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396927

RESUMO

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Assuntos
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Senescência Vegetal , Cálcio/metabolismo , Atraso no Tratamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
3.
Planta ; 259(3): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332379

RESUMO

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Assuntos
Ácido Abscísico , Robinia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Piruvatos/metabolismo , Raízes de Plantas/metabolismo
4.
Front Genet ; 15: 1345039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304337

RESUMO

As a unique and native conifer in China, Platycladus orientalis is widely used in soil erosion control, garden landscapes, timber, and traditional Chinese medicine. However, due to the lack of reference genome and transcriptome, it is limited to the further molecular mechanism research and gene function mining. To develop a full-length reference transcriptome, tissues from five different parts of P. orientalis and four cone developmental stages were sequenced and analyzed by single-molecule real-time (SMRT) sequencing through the PacBio platform in this study. Overall, 37,111 isoforms were detected by PacBio with an N50 length of 2,317 nt, an average length of 1,999 bp, and the GC content of 41.81%. Meanwhile, 36,120 coding sequences, 5,645 simple sequence repeats (SSRs), 1,201 non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events with five types were identified using the results obtained from the PacBio transcript isoforms. Furthermore, 1,659 transcription factors (TFs) were detected and belonged to 51 TF families. A total of 35,689 transcripts (96.17%) were annotated through the NCBI nr, KOG, Swiss-Prot and KEGG databases, and 385 transcript isoforms related to 8 types of hormones were identified incorporated into plant hormone signal transduction pathways. The assembly and revelation of the full-length transcriptome of P. orientalis offer a pioneering insight for future investigations into gene function and genetic breeding within Platycladus species.

5.
Pestic Biochem Physiol ; 198: 105753, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225097

RESUMO

Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano­selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano­selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano­selenium, and broadens the researching and applying of nano­selenium in repairing the damage caused by pesticides.


Assuntos
Fragaria , Fungicidas Industriais , Selênio , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Antocianinas/metabolismo , Antocianinas/farmacologia , Antioxidantes/farmacologia , Selênio/farmacologia , Fungicidas Industriais/farmacologia , Proteínas de Plantas/genética , Açúcares , Frutas , Regulação da Expressão Gênica de Plantas
6.
Plant Physiol Biochem ; 206: 108239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113720

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTHs) play a crucial role in plant growth and development. However, their functional response to phytohormone in sugar beet still remains obscure. In this study, we identified 30 putative BvXTH genes in the sugar beet genome. Phylogenetic and evolutionary relationship analysis revealed that they were clustered into three groups and have gone through eight tandem duplication events under purifying selection. Gene structure and motif composition analysis demonstrated that they were highly conserved and all contained one conserved glycoside hydrolase family 16 domain (Glyco_hydro_16) and one xyloglucan endotransglycosylase C-terminus (XET_C) domain. Transcriptional expression analysis exhibited that all BvXTHs were ubiquitously expressed in leaves, root hairs and tuberous roots, and most of them were up-regulated by brassinolide (BR), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA3). Further mutant complementary experiment demonstrated that expression of BvXTH17 rescued the retarded growth phenotype of xth22, an Arabidopsis knock out mutant of AtXTH22. The findings in our work provide fundamental information on the structure and evolutionary relationship of the XTH family genes in sugar beet, and reveal the potential function of BvXTH17 in plant growth and hormone response.


Assuntos
Arabidopsis , Beta vulgaris , Reguladores de Crescimento de Plantas , Beta vulgaris/genética , Beta vulgaris/metabolismo , Filogenia , Glicosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glicosídeo Hidrolases/metabolismo , Açúcares , Regulação da Expressão Gênica de Plantas
7.
J Agric Food Chem ; 71(51): 20613-20624, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100671

RESUMO

Pathogenic oomycetes infect a wide variety of organisms, including plants, animals, and humans, and cause massive economic losses in global agriculture, aquaculture, and human health. Salicylic acid (SA), an endogenous phytohormone, is regarded as an inducer of plant immunity. Here, the potato late blight pathogen Phytophthora infestans was used as a model system to uncover the inhibitory mechanisms of SA on pathogenic oomycetes. In this research, SA significantly inhibited the mycelial growth, sporulation, sporangium germination, and virulence of P. infestans. Inhibition was closely related to enhanced autophagy, suppression of translation initiation, and ribosomal biogenesis in P. infestans, as shown by multiomics analysis (transcriptomics, proteomics, and phosphorylated proteomics). Monodansylcadaverine (MDC) staining and Western blotting analysis showed that SA promoted autophagy in P. infestans by probably targeting the TOR signaling pathway. These observations suggest that SA has the potential to control late blight caused by P. infestans.


Assuntos
Phytophthora infestans , Solanum tuberosum , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas , Solanum tuberosum/metabolismo
8.
Biol Res ; 56(1): 58, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941013

RESUMO

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.


Assuntos
Fertilidade , MicroRNAs , Temperatura , Citoplasma/genética , Fertilidade/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
9.
World J Microbiol Biotechnol ; 39(9): 245, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420159

RESUMO

Algae symbiosis technology shows great potential in the synchronous treatment of biogas slurry and biogas, which has promising applications. For improving nutrients and CO2 removal rates, the present work constructed four microalgal systems: Chlorella vulgaris (C. vulgaris) monoculture, C. vulgaris-Bacillus licheniformis (B. licheniformis), C. vulgaris-activated sludge, and C. vulgaris-endophytic bacteria (S395-2) to simultaneously treat biogas as well as biogas slurry under GR24 and 5DS induction. Our results showed that the C. vulgaris-endophytic bacteria (S395-2) showed optimal growth performance along with photosynthetic activity under the introduction of GR24 (10-9 M). Under optimal conditions, CO2 removal efficiency form biogas, together with chemical oxygen demand, total phosphorus and total nitrogen removal efficiencies from biogas slurry reached 67.25 ± 6.71%, 81.75 ± 7.93%, 83.19 ± 8.32%, and 85.17 ± 8.26%, respectively. The addition of symbiotic bacteria isolated from microalgae can promote the growth of C. vulgaris, and the exogenous addition of GR24 and 5DS can strengthen the purification performance of the algae symbiosis to achieve the maximum removal of conventional pollutants and CO2.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Dióxido de Carbono , Bactérias , Nutrientes , Nitrogênio , Fósforo , Biomassa
10.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982386

RESUMO

LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.


Assuntos
Alho , MicroRNAs , RNA Longo não Codificante , Alho/genética , RNA Longo não Codificante/genética , Reguladores de Crescimento de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Ácidos Indolacéticos
11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982666

RESUMO

Ginseng is regarded as the "king of herbs" in China, with its roots and rhizomes used as medicine, and it has a high medicinal value. In order to meet the market demand, the artificial cultivation of ginseng emerged, but different growth environments significantly affect the root morphology of garden ginseng. In this study, we used ginseng cultivated in deforested land (CF-CG) and ginseng cultivated in farmland (F-CG) as experimental materials. These two phenotypes were explored at the transcriptomic and metabolomic levels so as to understand the regulatory mechanism of taproot enlargement in garden ginseng. The results show that, compared with those of F-CG, the thickness of the main roots in CF-CG was increased by 70.5%, and the fresh weight of the taproots was increased by 305.4%. Sucrose, fructose and ginsenoside were significantly accumulated in CF-CG. During the enlargement of the taproots of CF-CG, genes related to starch and sucrose metabolism were significantly up-regulated, while genes related to lignin biosynthesis were significantly down-regulated. Auxin, gibberellin and abscisic acid synergistically regulated the enlargement of the taproots of the garden ginseng. In addition, as a sugar signaling molecule, T6P might act on the auxin synthesis gene ALDH2 to promote the synthesis of auxin and, thus, participate in the growth and development of garden ginseng roots. In summary, our study is conducive to clarifying the molecular regulation mechanism of taproot enlargement in garden ginseng, and it provides new insights for the further exploration of the morphogenesis of ginseng roots.


Assuntos
Ginsenosídeos , Panax , Transcriptoma , Raízes de Plantas/genética , Metabolômica/métodos , Sacarose/metabolismo
12.
Front Plant Sci ; 13: 847202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574137

RESUMO

Plant growth and survival in nature, its growth process, will be affected by various factors from the environment, among which temperature has a greater impact. In recent years, extreme weather has frequently appeared, and the growth of crops has been increasingly affected by the environment. As an important flavoring and Chinese herbal medicine crop, Zanthoxylum bungeanum is also facing the harm of low-temperature stress. Plant hormones play a vital role in the response of plants to low temperatures. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the hormone components of cold-tolerant and cold-sensitive varieties of Z. bungeanum. Combined with chemometric analysis and weighted gene co-expression network analysis (WGCNA), the hormone component differences and hormone response strategies of Z. bungeanum under low-temperature stress were comprehensively studied. The results showed that 45 hormones were detected in Z. bungeanum. Among them, there were 7 kinds of components with high content and were detected in both two varieties. At the late stage of low-temperature stress, the contents of abscisic acid (ABA) and ABA-glucosyl ester (ABA-GE) in Fuguhuajiao (FG) were significantly increased, and the latter served as the storage of the former to supplement the active ABA. Orthogonal partial least squares discriminant analysis (OPLS-DA) found that indole-3-carboxylic acid (ICA), indole-3-carboxaldehyde (ICAld), meta-Topolin riboside (mTR), cis-Zeatin-O-glucoside riboside (cZROG), and N6-isopentenyladenosine (IPR) in FG were the upregulated important difference components, and IPR and 2-methylthio-cis-zeatin riboside (2MeScZR) in Fengxiandahongpao (FX) were the upregulated important difference components. There were common crossing points and independent response pathways in response to low temperature in two varieties. WGCNA analysis found that the main hormone components were associated with multiple metabolic pathways including carbon, fatty acid, amino acid, and sugar metabolism, indicating that hormone regulation plays an important role in the response of Z. bungeanum to low temperature. This study clarified the hormone response mechanism of Z. bungeanum under low-temperature stress and provided a reference and basis for further improving the cold resistance of Z. bungeanum and cultivating new varieties.

13.
Plant Cell Tissue Organ Cult ; 149(1-2): 467-483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125570

RESUMO

Atractylodes lancea (Thunb.) DC. is a well-known medicinal herb in China, containing abundant active components, including a variety of sesquiterpenoids. Owing to a shortage of wild resources, artificial cultivation has become the main breeding mode, leading to the germplasm degradation. In preliminary research, our research group found that a mutant tissue culture seedling of A. lancea is an excellent germplasm resource, characterized by early stem growth and higher sesquiterpenoid content than that of the wild type. In this study, the physiological and biochemical mechanisms underlying efficient sesquiterpenoids synthesis by this mutant A. lancea were systematically evaluated. The results showed that the photosynthetic efficiency, central carbon metabolism efficiency, and energy metabolism efficiency were significantly improved in mutant A. lancea compared with the wild type, and the content of endogenous hormones, such as gibberellin and jasmonic acid, changed significantly. In addition, levels of key metabolites and the expression level of key genes in the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways were significantly higher in mutant type than in wild type, resulting in elevated sesquiterpenoid synthesis in the mutant. These physiological and biochemical properties explain the rapid growth and high sesquiterpenoid content of mutant A. lancea. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-022-02240-5.

14.
Artigo em Chinês | WPRIM | ID: wpr-940574

RESUMO

Plant growth regulator (PGR) is mostly a class of chemical synthesis substance with physiological activities similar to plant hormones,which can promote cell elongation,induce vascular differentiation or accelerate tissue aging via regulating the physiological processes such as photosynthesis,respiration,transpiration,signal transduction,substance absorption and operation. PGR has the advantages of small dosage,high efficiency,low toxicity and less residue,and it is widely used in the planting of Chinese medicinal herbs. By consulting the relevant literature published in recent years,this paper briefly summarizes the main types of PGR,e.g.auxins,gibberellins,cytokinins,abscisic acid and ethylene,etc. On the other hand,this article analyzes and sums up the specific applications of PGR in the manufacture of Chinese herbal medicine,for instance,promoting seed germination,improving seed setting rate or fruit setting rate,dwarfing plants,inhibiting reproductive growth,regulating gender differentiation,stimulating fruit falling,enhancing resistance and so on. The problems existing in the practical use of PGR are pointed out,non-differentiation of specific species,unreasonable combination,not paying attention to the operation method,arbitrarily increasing the dose,lack of residue limit standard and reducing the content of some effective components,for example.Meanwhile,some feasible suggestions are put forward.Not only the suitable types of PGR should be selected in a reasonable and standardized manner,but also the appropriate concentration,dosage and period of application should be chosen carefully; the dual effects of PGR on plant growth and active ingredients in medicinal organs should be concerned,so as to improve the yield and avoid the loss of effective components on the basis of ensuring the quality of Chinese medicinal materials; it is necessary to strengthen the registration of PGR in the production of Chinese medicinal materials and establish residue limit standards to provide a monitoring basis for ensuring the safety of Chinese medicine in the future.The scientific use of PGR can promote the increase of agricultural yield and farmers' income,and make the healthy development of Chinese herbal medicine planting industry.

15.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830208

RESUMO

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.


Assuntos
Compostos Alílicos/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/microbiologia , Dissulfetos/farmacologia , Fungicidas Industriais/farmacologia , Alho/química , Peronospora/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Transcriptoma/efeitos dos fármacos
16.
J Nanobiotechnology ; 19(1): 316, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641908

RESUMO

Selenium (Se) can promote the growth and resistance of agricultural crops as fertilizers, while the role of nano-selenium (nano-Se) against Cd remains unclear in pepper plants (Capsicum annuum L.). Biofortification with nano-Se observably restored Cd stress by decreasing the level of Cd in plant tissues and boosting the accumulation in biomass. The Se compounds transformed by nano-Se were primarily in the form of SeMet and MeSeCys in pepper tissues. Differential metabolites and the genes of plant signal transduction and lignin biosynthesis were measured by employing transcriptomics and determining target metabolites. The number of lignin-related genes (PAL, CAD, 4CL, and COMT) and contents of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, caffeyl alcohol, and coniferaldehyde) were remarkably enhanced by treatment with Cd1Se0.2, thus, maintaining the integrity of cell walls in the roots. It also enhanced signal transduction by plant hormones and responsive resistance by inducing the biosynthesis of genes (BZR1, LOX3, and NCDE1) and metabolites (brassinolide, abscisic acid, and jasmonic acid) in the roots and leaves. In general, this study can enable a better understanding of the protective mechanism of nano-Se in improving the capacity of plants to resist environmental stress.


Assuntos
Cádmio/toxicidade , Capsicum , Lignina/biossíntese , Nanopartículas Metálicas/química , Selênio/farmacologia , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Capsicum/química , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
17.
Methods Mol Biol ; 2354: 143-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448159

RESUMO

The potato is among the most important food crops in the world and of incalculable value for global food security. In 2012, the crop area for potato in Northern and Western Europe reached almost 1 million ha and a production of over 37 million tons with an average yield between 18 and 45 tons/ha. However, current potato production is put in jeopardy by a number of important biotic stress factors including late blight (Phytophthora infestans), which was responsible for the disastrous Irish potato famine during 1843-1845. P. infestans shows a remarkable capacity for adaptation with respect to host genotype and applied fungicides. This has made disease management to become more and more difficult and put substantial emphasis on gaining more detailed insight into the molecular bases of plant pathogen interactions, in order to find more sophisticated ways for biological pest control. The plant hormones jasmonic acid (JA) and salicylic acid (SA) play central roles in the regulation of plant responses to biotic foes. In addition, other phytohormones including auxins and abscisic acid (ABA) have also been associated with plant defense responses. For this reason, the parallel analysis of multiple plant hormones in small tissue amounts represents an important field of research in contemporary plant sciences. Here, we describe a highly sensitive and accurate method for the quantitative analysis of ABA, JA, SA, and indole-3-acetic acid in potato plants by gas chromatography-coupled tandem mass spectrometry (GC-MS/MS).


Assuntos
Solanum tuberosum , Ácido Abscísico , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Ácido Salicílico , Estresse Fisiológico , Espectrometria de Massas em Tandem
18.
Bioelectromagnetics ; 42(7): 593-602, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289513

RESUMO

We previously found that a near-null magnetic field affected reproductive growth in Arabidopsis under white light. To test whether the effect of a near-null magnetic field on fruit growth of Arabidopsis is related to cryptochrome, we grew wild-type Arabidopsis and cryptochrome double mutant, cry1/cry2, in a near-null magnetic field under blue light. We found that fruit growth of wild-type Arabidopsis instead of the cry1/cry2 mutant was suppressed by the near-null magnetic field. Furthermore, gibberellin (GA) levels of GA4 , GA9 , GA34 , and GA51 in fruits of wild-type plants in the near-null magnetic fields were significantly lower than local geomagnetic field controls. However, in cry1/cry2 mutants, levels of the four detected GAs in fruits in the near-null magnetic fields did not differ significantly from controls. Expressions of GA20-oxidase (GA20ox) genes (GA20ox1 and GA20ox2) and GA3-oxidase (GA3ox) genes (GA3ox1 and GA3ox3) in fruits of wild-type plants rather than cry1/cry2 mutants were downregulated by the near-null magnetic field. In contrast, expressions of GA2-oxidase (GA2ox) genes and GA signaling genes were not affected by the near-null magnetic field. These results indicate that suppression of fruit growth by the near-null magnetic field is mediated by cryptochrome and that GAs are involved in the regulation of fruit growth by the near-null magnetic field. © 2021 Bioelectromagnetics Society.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Luz , Campos Magnéticos
19.
Plant Physiol Biochem ; 156: 209-220, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32977177

RESUMO

Salt stress is a continuous threat to global crop production. Here, we studied the alleviation role of exogenous silicon (Si) in NaCl-stressed cucumber, with special emphasis on plant growth, proline (Pro) and hormone metabolisms. The results showed that Si supplementation ameliorated the adverse effects of NaCl on plants growth, biomass, and oxidative stress. Salt stress greatly increased the content of Pro throughout the experiment, while Si regulated Pro content in two distinct ways. Si promoted the salt-induced Pro levels after 3 and 6 days of treatment, but decreased it after 9 and 12 days of treatment. Moreover, P5CS and ProDH activities and P5CS gene play important roles in Si and salt-regulated Pro levels in different stress phase. Under stress condition, Si addition tend to revert the content of ABA, IAA, cytokinin and SA to the control levels in most cases. Further correlation analysis revealed a negative correlation between the root cytokinin and Pro content after 3 days of treatment, suggesting the interaction between cytokinin and Pro metabolism. Exogenous application of Pro and ProDH competitive inhibitor D-Lactate confirmed the possible interplay between Pro and cytokinin metabolism. Further study identified several CKX (Csa4G647490 and Csa1G589070) and IPT (Csa7G392940 and Csa3G150100) genes that may be responsible for the regulation of cytokinin accumulation by Si and/or Pro after short-term of treatment. The results suggested that Pro is a key factor in Si-induced salt tolerance, and Si-increased Pro content may participate in the regulation of cytokinin metabolism under short-term of salt stress.


Assuntos
Cucumis sativus/fisiologia , Citocininas/fisiologia , Prolina/fisiologia , Estresse Salino , Silício/farmacologia , Cucumis sativus/genética , Genes de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Salinidade
20.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290389

RESUMO

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Assuntos
Cloroplastos/ultraestrutura , Ácido Cítrico/farmacologia , Cobre/toxicidade , Corchorus/crescimento & desenvolvimento , Corchorus/fisiologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Corchorus/efeitos dos fármacos , Corchorus/ultraestrutura , Gases/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Plântula/efeitos dos fármacos , Plântula/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA