Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836111

RESUMO

Female hemp plants are desired in floral hemp operations due to their higher cannabinoid contents. To produce feminized seeds, a critical step of inducing fertile male flowers on female plants is performed. In feminized seed production, freshly mixed STS (silver thiosulfate + sodium thiosulfate) is applied to female plants as an ethylene inhibitor to induce male flowers. However, the short-shelf stability of the STS buffer can cause difficulty in the application and inconsistent results. Alternative methods with improved accessibility and stable buffers will be beneficial for the hemp industry and hemp breeders. A commercially available floriculture product, Chrysal ALESCO®, contains silver nitrate, the same active ingredient as STS but with increased shelf stability. This study compares Chrysal ALESCO® to the traditional STS standard methods for male flower induction on female plants and their pollen quality. The two treatments were applied to six female hemp accessions with three replicates investigated, and the male flower counts and pollen quality were compared. No statistically significant difference was discovered in their male flower counts; the STS-treated plant produced an average of 478.18 male flowers, and the Chrysal ALESCO®-treated plant produced an average of 498.24 male flowers per plant. Fluorescein diacetate (FDA) and acetocarmine stains were used to investigate the pollen quality (non-aborted rate) of two chosen genotypes. FDA-stained pollen of Chrysal ALESCO® showed a significantly higher non-aborted rate than the pollen of traditional STS-treated plants (p < 0.001); however, only a marginally higher non-aborted rate was discovered by acetocarmine staining (p = 0.0892). In summary, Chrysal ALESCO® performed equally to traditional STS treatment at male flower counts and better or equally in pollen quality. With better shelf stability and easy application, ALESCO® can be a viable alternative option for stimulating male flowers on female hemp plants.

2.
Environ Sci Pollut Res Int ; 30(56): 118280-118290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737946

RESUMO

Terminal heat during reproductive stages of wheat (Triticum aestivum L.) limits the productivity of the crop. Magnesium (Mg) is an essential macronutrient that is involved in many physiological and biochemical processes to affect photosynthesis and seed weight. The present study comparatively evaluated Mg applied to soil (80 kg MgSO4·7H2O ha-1) and to plant foliage (4% w/v) in improving wheat performance under terminal heat. Wheat crop was grown in two sets of treatments until the booting stage, and then one set of plants was shifted to a glasshouse (±5 °C) at the booting stage to grow until maturity in comparison to control plants kept under ambient warehouse condition. Heat stress reduced the pollen viability while foliar- and soil-applied Mg improved it by 3% and 6% under heat stress, respectively, compared to the control without Mg treatment. The 100-seed weight, spike length, and biological yield reduced by 39%, 19%, and 50% under heat stress; however, foliar and soil application increased 100-seed weight by 45% and 40%, spike length by 8% and 5%, and biological yield by 35% and 25% under heat stress, respectively. Soil Mg showed maximum SPAD chlorophyll values; however, response was statistically similar to that of foliar Mg as compared to the control without Mg supply. Membrane stability decreased (4%) due to heat stress while foliar and soil treatments improved membrane stability by 8% and 5% compared to that of the control, respectively. Thus, Mg application through soil or plant foliage can be an effective way to reduce negative impacts of terminal heat in wheat by improving pollen viability at anthesis and 100-seed weight that was attributed to increased chlorophyll contents during anthesis.


Assuntos
Magnésio , Triticum , Magnésio/farmacologia , Temperatura , Sementes , Clorofila/farmacologia , Solo/química , Pólen , Fertilização
3.
Methods Mol Biol ; 2686: 199-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540359

RESUMO

Major advances have been made in our understanding of anther developmental processes in flowering plants through a combination of genetic studies, cell biological technologies, biochemical analyses, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize widely used protocols for pollen viability staining, investigation of anther morphogenesis by scanning electron microscopy (SEM), light microscopy of semi-thin sections, ultrathin section-based transmission electron microscopy (TEM), TUNEL (terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling) assay for tapetum programmed cell death, and laser microdissection procedures to obtain specific cells or cell layers for transcriptome analysis.


Assuntos
Arabidopsis , Oryza , Arabidopsis/metabolismo , Oryza/genética , Microscopia Eletrônica de Transmissão , Pólen/metabolismo , Morfogênese , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Exp Bot ; 74(21): 6551-6562, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37584205

RESUMO

In vitro pollen germination is considered the most efficient method to assess pollen viability. The pollen germination frequency and pollen tube length, which are key indicators of pollen viability, should be accurately measured during in vitro culture. In this study, a Mask R-CNN model trained using microscopic images of tree peony (Paeonia suffruticosa) pollen has been proposed to rapidly detect the pollen germination rate and pollen tube length. To reduce the workload during image acquisition, images of synthesized crossed pollen tubes were added to the training dataset, significantly improving the model accuracy in recognizing crossed pollen tubes. At an Intersection over Union threshold of 50%, a mean average precision of 0.949 was achieved. The performance of the model was verified using 120 testing images. The R2 value of the linear regression model using detected pollen germination frequency against the ground truth was 0.909 and that using average pollen tube length was 0.958. Further, the model was successfully applied to two other plant species, indicating a good generalizability and potential to be applied widely.


Assuntos
Aprendizado Profundo , Germinação , Pólen , Tubo Polínico
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362251

RESUMO

Pollen grains, the male gametophytes for reproduction in higher plants, are vulnerable to various stresses that lead to loss of viability and eventually crop yield. A conventional method for assessing pollen viability is manual counting after staining, which is laborious and hinders high-throughput screening. We developed an automatic detection tool (PollenDetect) to distinguish viable and nonviable pollen based on the YOLOv5 neural network, which is adjusted to adapt to the small target detection task. Compared with manual work, PollenDetect significantly reduced detection time (from approximately 3 min to 1 s for each image). Meanwhile, PollenDetect can maintain high detection accuracy. When PollenDetect was tested on cotton pollen viability, 99% accuracy was achieved. Furthermore, the results obtained using PollenDetect show that high temperature weakened cotton pollen viability, which is highly similar to the pollen viability results obtained using 2,3,5-triphenyltetrazolium formazan quantification. PollenDetect is an open-source software that can be further trained to count different types of pollen for research purposes. Thus, PollenDetect is a rapid and accurate system for recognizing pollen viability status, and is important for screening stress-resistant crop varieties for the identification of pollen viability and stress resistance genes during genetic breeding research.


Assuntos
Aprendizado Profundo , Melhoramento Vegetal , Pólen , Software , Temperatura Alta
6.
Ecotoxicol Environ Saf ; 246: 114191, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265405

RESUMO

Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses. Tassel growth and spikelet development were considerably suppressed, pollen viability was negatively impacted, and pollen starch granules were depleted during anthesis under stress. The inhibitory effects were more significant due to combined stresses than to heat or drought individually. The metabolic analysis identified 71 important metabolites in the combined stress compared to the other treatments, including sugars and their derivatives related to pollen viability. Transcriptomics also revealed that carbohydrate metabolism was significantly altered under stress. Moreover, a comprehensive metabolome-transcriptome analysis identified a central mechanism in the biosynthesis of UDP-glucose involved in reducing the activity of sucrose synthase SH-1 (shrunken 1) and sus1 (sucrose synthase 1) that suppressed sucrose transfer to UDP-glucose, leading to pollen viability exhaustion under stress. In conclusion, the lower pollen viability after heat and drought stress was associated with poor sucrose synthase activity due to the stress treatments.


Assuntos
Secas , Zea mays , Zea mays/metabolismo , Temperatura Alta , Transcriptoma , Estresse Fisiológico , Pólen/genética , Perfilação da Expressão Gênica , Glucose/metabolismo , Difosfato de Uridina/metabolismo , Regulação da Expressão Gênica de Plantas
7.
New Phytol ; 236(2): 525-537, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811428

RESUMO

Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.


Assuntos
Arabidopsis , Giberelinas , Arabidopsis/genética , Flores , Regulação da Expressão Gênica de Plantas , Hormônios , Pólen/genética , Sacarose
8.
Plant Cell Rep ; 41(2): 447-461, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35099612

RESUMO

KEY MESSAGE: Fast-drying and cooling induce fast intracellular water loss and reduced ice-crystal formation, which may promote the formation of intracellular glasses that might improve the likelihood of wheat pollen survival. Long-term storage of pollen is important for the fertilization of spatially or temporally isolated female parents, especially in hybrid breeding. Wheat pollen is dehydration-sensitive and rapidly loses viability after shedding. To preserve wheat pollen, we hypothesized that fast-drying and cooling rates would increase the rate of intracellular water content (WC) removal, decrease intracellular ice-crystal formation, and increase viability after exposure to ultra-low temperatures. Therefore, we compared slow air-drying with fast-drying (dry air flow) and found significant correlations between pollen WC and viability (r = 0.92, P < 0.001); significant differences in WCs after specific drying times; and comparable viabilities after drying to specific WCs. Fast-drying to WCs at which ice melting events were not detected (ΔH = 0 J mg-1 DW, < 0.28 mg H2O mg-1 DW) reduced pollen viability to 1.2 ± 1.0%, but when drying to 0.39 mg H2O mg-1 DW, some viable pollen was detected (39.4 ± 17.9%). Fast cooling (150 °C min-1) of fast-dried pollen to 0.91 ± 0.11 mg H2O mg-1 DW induced less and a delay of ice-crystal formation during cryomicroscopic-video-recordings compared to slow cooling (1 °C min-1), but viability was low (4.5-6.1%) and comparable between cooling rates. Our data support that the combination of fast-drying and cooling rates may enable the survival of wheat pollen likely due to (1) a reduction of the time pollen would be exposed to drying-related deleterious biochemical changes and (2) an inhibition of intracellular ice-crystal formation, but additional research is needed to obtain higher pollen survival after cooling.


Assuntos
Pólen/química , Pólen/fisiologia , Triticum , Varredura Diferencial de Calorimetria , Temperatura Baixa , Microscopia Crioeletrônica , Criopreservação , Cristalização , Dessecação , Liofilização , Congelamento , Gelo , Pólen/citologia
9.
Plant Reprod ; 35(1): 9-17, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34232397

RESUMO

Many crop species are cultivated to produce seeds and/or fruits and therefore need reproductive success to occur. Previous studies proved that high temperature on mature pollen at anther dehiscence reduce viability and germinability therefore decreasing crop productivity. We hypothesized that high temperature might affect pollen functionality even if the heat treatment is exerted only during the microsporogenesis. Experimental data on Solanum lycopersicum 'Micro-Tom' confirmed our hypothesis. Microsporogenesis successfully occurred at both high (30 °C) and optimal (22 °C) temperature. After the anthesis, viability and germinability of the pollen developed at optimal temperature gradually decreased and the reduction was slightly higher when pollen was incubated at 30 °C. Conversely, temperature effect was eagerly enhanced in pollen developed at high temperature. In this case, a drastic reduction of viability and a drop-off to zero of germinability occurred not only when pollen was incubated at 30 °C but also at 22 °C. Further ontogenetic analyses disclosed that high temperature significantly speeded-up the microsporogenesis and the early microgametogenesis (from vacuolated stage to bi-cellular pollen); therefore, gametophytes result already senescent at flower anthesis. Our work contributes to unravel the effects of heat stress on pollen revealing that high temperature conditions during microsporogenesis prime a fatal shortening of the male gametophyte lifespan.


Assuntos
Gametogênese Vegetal , Longevidade , Temperatura Alta , Pólen , Temperatura
10.
Plant Biol (Stuttg) ; 23(1): 140-147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32967048

RESUMO

The future impact of climate change and a warmer world is a matter of great concern. We therefore aimed to evaluate the effects of temperature on pollen viability and fruit set of Mediterranean orchids. The in vitro and controlled pollination experiments were performed to evaluate the ability of pollinia stored at lower and higher temperatures to germinate and produce fruits and seeds containing viable embryos. In all of the examined orchids, pollen stored at -20 °C remained fully viable for up to 3 years, reducing its percentage germination from year 4 onwards. Pollinia stored at higher temperatures had a drastic reduction in vitality after 2 days at 41-44 °C, while pollinia stored at 47-50 °C did not show any pollen tube growth. The different levels of pollen viability duration among the examined orchids can be related to their peculiar reproductive biology and pollination ecology. The germinability of pollinia stored at lower temperatures for long periods suggests that orchid pollinia can be conserved ex situ. In contrast, higher temperatures can have harmful effects on the vitality of pollen and consequently on reproductive success of the plants. To our knowledge, this is the first report demonstrating the effects of global change on orchid pollen, and on pollen ability to tolerate, or not, higher air temperatures. Although vegetative reproduction allows orchids to survive a few consecutive warm years, higher temperatures for several consecutive years can have dramatic effects on reproductive success of orchids.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura Alta , Orchidaceae/fisiologia , Pólen/fisiologia , Congelamento , Germinação , Polinização , Reprodução
11.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21180505, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285549

RESUMO

HIGHLIGHTS Callogenesis was induced from watermelon anthers The auxin 2,4-D at 2.0 and 5.0 μM concentrations induced callus formation. Anthers' responses to the pre-treatment at 4 °C varied according to the watermelon genotype.


Abstract Callus induction is one of the pathways required for haploid plant regeneration through anther culture. Pollen viability, as well as the effect of growth regulators and cold pretreatment on anthers of two watermelon lines (Smile and Sugar Baby) to induce callus formation were herein evaluated. Pollen viability was estimated through the staining technique using 2% acetic carmine. Male flower buds were collected and disinfested to allow removal anthers. These anthers were placed on Murashige and Skoog medium, which was supplemented with 2,4-dichlorophenoxyacetic (2,4-D) at 0.0, 0.5, 1.0, 2.0 or 5.0 μM or with 6-benzylaminopurine at 0.0, 0.5, 1.0, 1.5, or 2.0 μM, in combination with 2.0 μM of 2,4-dichlorophenoxyacetic. Anthers were pretreated at 4 °C, for two days and then placed in vitro. Both watermelon lines provided high pollen viability rates (from 93 to 98%). The 2.0 and 5.0 μM concentrations of 2,4-D stimulated higher friable callus formation. The optimal concentration of 2,4-D was estimated at 3.78 μM and 4.17 μM, which had callus induction rates of 64% and 52%, respectively. The combination of 2.0 μM of 2,4-D and 6-benzylaminopurine did not lead to increased anther response to callus induction. The pre-treatment applied to flower buds at 4 °C enabled callus induction and the anther response to callus induction was genotype-dependent.


Assuntos
Reguladores de Crescimento de Plantas , Pólen , Citrullus , Genótipo
12.
Methods Mol Biol ; 2160: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529425

RESUMO

The number of pollen grains is a critical part of the reproductive strategies in plants and varies greatly between and within species. In agriculture, pollen viability is important for crop breeding. It is a laborious work to count pollen tubes using a counting chamber under a microscope. Here, we present a method of counting the number of pollen grains using a cell counter. In this method, the counting step is shortened to 3 min per flower, which, in our setting, is more than five times faster than the counting chamber method. This technique is applicable to species with a lower and higher number of pollen grains, as it can count particles in a wide range, from 0 to 20,000 particles, in one measurement. The cell counter also estimates the size of the particles together with the number. Because aborted pollen shows abnormal membrane characteristics and/or a distorted or smaller shape, a cell counter can quantify the number of normal and aborted pollen separately. We explain how to count the number of pollen grains and measure pollen size in Arabidopsis thaliana, Arabidopsis kamchatica, and wheat (Triticum aestivum).


Assuntos
Separação Celular/métodos , Pólen/classificação , Arabidopsis , Separação Celular/instrumentação , Melhoramento Vegetal/métodos , Pólen/citologia , Secale
13.
J Evol Biol ; 33(4): 388-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32012387

RESUMO

Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant-level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen-related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means-dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage-helping to explain the maintenance of pollen colour variation.


Assuntos
Campanulaceae/genética , Aptidão Genética , Pigmentação , Pólen , Campanulaceae/metabolismo , Cor , Flavonoides/metabolismo , Fenótipo , Reprodução
14.
J Plant Res ; 133(1): 57-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654246

RESUMO

Vegetable growth of halophytes has significantly increased through moderate salinity. However, little is known about the reproductive traits of euhalophytes. Male reproduction is pivotal for fertilization and seed production and sensitive to abiotic stressors. The pollen viability and pollen longevity of Suaeda salsa treated with 0 and 200 mM of NaCl were evaluated. It was revealed that the pollen size of S. salsa treated with NaCl was significantly bigger than that in controls. Furthermore, the pollen viability of S. salsa plants treated with NaCl was also significantly higher than that of control after 8 h of the pollens were collected (from 10 to 27 h). The pollen viability of NaCl-treated plants in the field could be maintained for 8 h (from 07:00 to 15:00) in sunny days, which was 1 h longer than that of control plants (from 07:00 to 14:00). Meanwhile, the pollen preservation time of NaCl-treated plants was 16 h at room temperature, which was 8 h longer than that of control plants. Genes related to pollen development, such as SsPRK3, SsPRK4, and SsLRX, exhibited high expression in the flowers of NaCl-treated plants. This indicated that NaCl markedly improved the pollen viability and preservation time via the increased expression of pollen development-related genes, and this benefits the population establishment of halophytes such as S. salsa in saline regions.


Assuntos
Chenopodiaceae , Pólen , Plantas Tolerantes a Sal , Cloreto de Sódio , Regulação para Cima
15.
Plant Cell Physiol ; 60(12): 2648-2659, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651948

RESUMO

The last stages of stamen development, collectively called stamen maturation, encompass pollen viability, filament elongation and anther dehiscence or opening. These processes are essential for male fertility in Arabidopsis and require the function of jasmonate signaling. There is a good understanding of jasmonate synthesis, perception and transcriptional outputs in Arabidopsis stamens. In addition, the spatiotemporal localization of jasmonate signaling components at the tissue and cellular levels has started to emerge in recent years. However, the ultimate cellular functions activated by jasmonate to promote stamen maturation remain unknown. The hormones auxin and gibberellin have been proposed to control the activation of jasmonate synthesis to promote stamen maturation, although we hypothesize that this action is rather indirect. In this review, we examine these different areas, attempt to clarify some confusing aspects found in the literature and raise testable hypothesis that may help to further understand how jasmonate controls male fertility in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Flores/metabolismo , Oxilipinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo
16.
Plant J ; 100(3): 487-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31278825

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , NAD/metabolismo , Antiporters/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Insercional , Proteínas de Transporte de Nucleotídeos , Peroxissomos/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Amido/metabolismo
17.
Plant Biol (Stuttg) ; 21(4): 715-722, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30653805

RESUMO

Pollen viability affects the probability that a pollen grain deposited on a plant's stigma will produce a viable seed. Because a mature seed is needed before a gene flow event can occur, pollen viability will influence the risk of escape for genetically engineered (GE) crops. Pollen viability was measured at intervals for up to 2 h following removal of the pollen from the anthers. It was quantified at three temperatures and for different alfalfa varieties, including both conventional and Roundup Ready (RR) varieties. Pollen viability was assessed using in vitro germination. Time since removal from the anthers was the most prevalent factor affecting pollen viability in alfalfa. Pollen viability declined with increasing time at all three temperatures and for all varieties tested. Pollen viability was not affected by temperatures ranging between 25 and 37 °C and did not vary among plant varieties, including conventional and RR varieties. Bee foraging behaviour suggested pollen viability within the first 10 min following pollen removal from a flower to most affect seed production. Pollen longevity was predicted to have little impact on seed set and gene flow. Linking pollinator behaviour to pollen viability improved our understanding of its impact on gene flow risk.


Assuntos
Fluxo Gênico/genética , Medicago sativa/fisiologia , Pólen/fisiologia , Sobrevivência Celular , Flores/fisiologia , Germinação , Medicago sativa/genética , Pólen/genética , Temperatura , Fatores de Tempo
18.
Plant Cell Environ ; 42(1): 354-372, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136298

RESUMO

Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars ("CDC Golden" and "CDC Sage") were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of "CDC Sage" being more stable compared with "CDC Golden." Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in "CDC Golden," but not in "CDC Sage." After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.


Assuntos
Flores/fisiologia , Pisum sativum/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Termotolerância/fisiologia , Temperatura Alta
19.
Ecology ; 100(1): e02553, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411786

RESUMO

Flower signaling and orientation are key characteristics that determine a flower's pollinator guild. However, many flowers actively move during their daily cycle, changing both their detectability and accessibility to pollinators. The flowers of the wild tobacco Nicotiana attenuata orientate their corolla upward at sunset and downward after sunrise. Here, we investigated the effect of different flower orientations on a major pollinator of N. attenuata, the hawkmoth Manduca sexta. We found that although flower orientation influenced the flight altitude of the moth in respect to the flower, it did not alter the moth's final flower choice. These behavioral observations were consistent with the finding that orientation did not systematically change the spatial distribution of floral volatiles, which are major attractants for the moths. Moreover, hawkmoths invested the same amount of time into probing flowers at different orientations, even though they were only able to feed and gather pollen from horizontally and upward-oriented flowers, but not from downward-facing flowers. The orientation of the flower was hence crucial for a successful interaction between N. attenuata and its hawkmoth pollinator. Additionally, we also investigated potential adverse effects of exposing flowers at different orientations to natural daylight levels, finding that anther temperature of upward-oriented flowers was more than 7°C higher than for downward-oriented flowers. This increase in temperature likely caused the significantly reduced germination success that was observed for pollen grains from upward-oriented flowers in comparison to those of downward and horizontally oriented flowers. These results highlight the importance of flower reorientation to balance pollen protection and a successful interaction of the plant with its insect pollinators by maintaining the association between flower volatiles and flower accessibility to the pollinator.


Assuntos
Manduca , Mariposas , Animais , Flores , Pólen , Polinização
20.
BMC Plant Biol ; 18(1): 245, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340520

RESUMO

BACKGROUND: Extremely high temperatures are becoming an increasingly severe threat to crop yields. It is well documented that salicylic acid (SA) can enhance the stress tolerance of plants; however, its effect on the reproductive organs of rice plants has not been described before. To investigate the mechanism underlying the SA-mediated alleviation of the heat stress damage to rice pollen viability, a susceptible cultivar (Changyou1) was treated with SA at the pollen mother cell (PMC) meiosis stage and then subjected to heat stress of 40 °C for 10 d until 1d before flowering. RESULTS: Under control conditions, no significant difference was found in pollen viability and seed-setting rate in SA treatments. However, under heat stress conditions, SA decreased the accumulation of reactive oxygen species (ROS) in anthers to prevent tapetum programmed cell death (PCD) and degradation. The genes related to tapetum development, such as EAT1 (Eternal Tapetum 1), MIL2 (Microsporeless 2), and DTM1 (Defective Tapetum and Meiocytese 1), were found to be involved in this process. When rice plants were exogenously sprayed with SA or paclobutrazol (PAC, a SA inhibitor) + H2O2 under heat stress, a significantly higher pollen viability was found compared to plants sprayed with H2O, PAC, or SA + dimethylthiourea (DMTU, an H2O2 and OH· scavenger). Additionally, a sharp increase in H2O2 was observed in the SA or PAC+ H2O2 treatment groups compared to other treatments. CONCLUSION: We suggest that H2O2 may play an important role in mediating SA to prevent pollen abortion caused by heat stress through inhibiting the tapetum PCD.


Assuntos
Resposta ao Choque Térmico , Peróxido de Hidrogênio/metabolismo , Oryza/fisiologia , Ácido Salicílico/metabolismo , Apoptose , Temperatura Alta , Meiose , Pólen/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA