Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.142
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667804

RESUMO

High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.


Assuntos
Fucus , Proteômica , Humanos , Células CACO-2 , Fucus/química , Proteômica/métodos , Anticolesterolemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Colesterol/metabolismo , Absorção Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Intestinos/efeitos dos fármacos
2.
Clin Nutr ; 43(5): 1162-1170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603973

RESUMO

BACKGROUND & AIM: Clinical trials supplementing the long-chain polyunsaturated fatty acids (LCPUFAs) docosahexaenoic acid (DHA) and arachidonic acid (AA) to preterm infants have shown positive effects on inflammation-related morbidities, but the molecular mechanisms underlying these effects are not fully elucidated. This study aimed to determine associations between DHA, AA, and inflammation-related proteins during the neonatal period in extremely preterm infants. METHODS: A retrospective exploratory study of infants (n = 183) born below 28 weeks gestation from the Mega Donna Mega trial, a randomized multicenter trial designed to study the effect of DHA and AA on retinopathy of prematurity. Serial serum samples were collected after birth until postnatal day 100 (median 7 samples per infant) and analyzed for phospholipid fatty acids and proteins using targeted proteomics covering 538 proteins. Associations over time between LCPUFAs and proteins were explored using mixed effect modeling with splines, including an interaction term for time, and adjusted for gestational age, sex, and center. RESULTS: On postnatal day one, 55 proteins correlated with DHA levels and 10 proteins with AA levels. Five proteins were related to both fatty acids, all with a positive correlation. Over the first 100 days after birth, we identified 57 proteins to be associated with DHA and/or AA. Of these proteins, 41 (72%) related to inflammation. Thirty-eight proteins were associated with both fatty acids and the overall direction of association did not differ between DHA and AA, indicating that both LCPUFAs similarly contribute to up- and down-regulation of the preterm neonate inflammatory proteome. Primary examples of this were the inflammation-modulating cytokines IL-6 and CCL7, both being negatively related to levels of DHA and AA in the postnatal period. CONCLUSIONS: This study supports postnatal non-antagonistic and potentially synergistic effects of DHA and AA on the inflammation proteome in preterm infants, indicating that supplementation with both fatty acids may contribute to limiting the disease burden in this vulnerable population. CLINICAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT03201588).


Assuntos
Ácido Araquidônico , Ácidos Docosa-Hexaenoicos , Lactente Extremamente Prematuro , Inflamação , Proteoma , Humanos , Ácidos Docosa-Hexaenoicos/sangue , Ácido Araquidônico/sangue , Lactente Extremamente Prematuro/sangue , Recém-Nascido , Feminino , Estudos Retrospectivos , Masculino , Inflamação/sangue , Proteoma/análise
3.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38624258

RESUMO

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação para Baixo , Extratos Vegetais , Plantas Medicinais , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Plantas Medicinais/química , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Terminalia/química , Mucuna/química
4.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561057

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Proteômica , Animais , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Mapas de Interação de Proteínas , Feminino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Camundongos Endogâmicos BALB C , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Antiasmáticos/farmacologia , Modelos Animais de Doenças , Ovalbumina , Masculino
5.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Assuntos
Anti-Hipertensivos , Hipertensão , Medicina Tradicional Chinesa , Metabolômica , Farmacologia em Rede , Ratos Endogâmicos SHR , Animais , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ratos , Medicina Tradicional Chinesa/métodos , Pressão Sanguínea/efeitos dos fármacos , Antílopes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cornos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Modelos Animais de Doenças
6.
J Ethnopharmacol ; 329: 118107, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599475

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (PLP), a traditional Chinese medicine, is recognized for its antioxidative and anti-apoptotic properties. Despite its potential medicinal value, the mechanisms underlying its efficacy have been less explored, particularly in alleviating acute liver injury (ALI) caused by excessive intake of acetaminophen (APAP). AIM OF THE STUDY: This study aims to elucidate the role and mechanisms of PLP in mitigating oxidative stress and apoptosis induced by APAP. MATERIALS AND METHODS: C57BL/6 male mice were pre-treated with PLP for seven consecutive days, followed by the induction of ALI using APAP. Liver pathology was assessed using HE staining. Serum indicators, immunofluorescence (IF), immunohistochemical (IHC), and transmission electron microscopy were employed to evaluate levels of oxidative stress, ferroptosis and apoptosis. Differential expression proteins (DEPs) in the APAP-treated and PLP pre-treated groups were analyzed using quantitative proteomics. Subsequently, the potential mechanisms of PLP pre-treatment in treating ALI were validated using western blotting, molecular docking, molecular dynamics simulations, and surface plasmon resonance (SPR) analysis. RESULTS: The UHPLC assay confirmed the presence of three compounds, i.e., albiflorin, paeoniflorin, and oxypaeoniflorin. Pre-treatment with PLP was observed to ameliorate liver tissue pathological damage through HE staining. Further confirmation of efficacy of PLP in alleviating APAP-induced liver injury and oxidative stress was established through liver function serum biochemical indicators, IF of reactive oxygen species (ROS) and IHC of glutathione peroxidase 4 (GPX4) detection. However, PLP did not demonstrate a significant effect in alleviating APAP-induced ferroptosis. Additionally, transmission electron microscopy and TUNEL staining indicated that PLP can mitigate hepatocyte apoptosis. PKC-ERK pathway was identified by proteomics, and subsequent molecular docking, molecular dynamics simulations, and SPR verified binding of the major components of PLP to ERK protein. Western blotting demonstrated that PLP suppressed protein kinase C (PKC) phosphorylation, blocking extracellular signal-regulated kinase (ERK) phosphorylation and inhibiting oxidative stress and cell apoptosis. CONCLUSION: This study demonstrates that PLP possesses hepatoprotective abilities against APAP-induced ALI, primarily by inhibiting the PKC-ERK cascade to suppress oxidative stress and cell apoptosis.


Assuntos
Acetaminofen , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Paeonia , Animais , Acetaminofen/toxicidade , Paeonia/química , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia
7.
J Hazard Mater ; 470: 134204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579586

RESUMO

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Assuntos
Ascomicetos , Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Selênio/metabolismo , Ascomicetos/metabolismo , Oxirredução , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas Metálicas/química , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteômica
8.
J Ethnopharmacol ; 329: 118098, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Major Depressive Disorder (MDD) emerges as a complex psychosomatic condition, notable for its considerable suicidality and mortality rates. Increasing evidence suggests the efficacy of Chinese herbal medicine in mitigating depression symptoms and offsetting the adverse effects associated with conventional Western therapeutics. Notably, clinical trials have revealed the adjunctive antidepressant potential of Kaiyu Zhishen Decoction (KZD) alongside Western medication. However, the standalone antidepressant efficacy of KZD and its underlying mechanisms merit in-depth investigation. AIM OF THE STUDY: This research aims to elucidate the impact of KZD on MDD and delineate its mechanistic pathways through integrated network pharmacological assessments and empirical in vitro and in vivo analyses. MATERIALS AND METHODS: To ascertain the optimal antidepressant dosage and mechanism of KZD, a Chronic Unpredictable Mild Stress (CUMS)-induced depression model in mice was established to evaluate depressive behaviors. High-Performance Liquid Chromatography (HPLC) and network pharmacological approaches were employed to predict KZD's antidepressant mechanisms. Subsequently, hippocampal samples were subjected to 4D-DIA proteomic sequencing and validated through Western blot, immunofluorescence, Nissl staining, and pathway antagonist applications. Additionally, cortisol-stimulated PC12 cells were utilized to simulate neuronal damage, analyzing protein and mRNA levels of MAPK-related signals and cell proliferation markers. RESULTS: The integration of network pharmacology and HPLC identified kaempferol and quercetin as KZD's principal active compounds for MDD treatment. Proteomic and network pharmacological KEGG pathway analyses indicated the MAPK signaling pathway as a critical regulatory mechanism for KZD's therapeutic effect on MDD. KZD was observed to mitigate CUMS-induced upregulation of p-ERK/ERK, CREB, and BDNF protein expressions in hippocampal cells by attenuating oxidative stress, thereby ameliorating neuronal damage and exerting antidepressant effects. The administration of PD98059 counteracted KZD's improvements in depression-like behaviors and downregulated p-ERK/ERK and BDNF protein expressions in the hippocampus. CONCLUSIONS: This investigation corroborates KZD's pivotal, dose-dependent role in antidepressant activity. Both in vivo and in vitro experiments demonstrate KZD's capacity to modulate the ERK-CREB-BDNF signaling pathway by diminishing ROS expression induced by oxidative stress, enhancing neuronal repair, and thus, manifesting antidepressant properties. Accordingly, KZD represents a promising herbal candidate for further antidepressant research.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Transdução de Sinais , Animais , Antidepressivos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Células PC12 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Comportamento Animal/efeitos dos fármacos
9.
Anal Bioanal Chem ; 416(14): 3349-3360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607384

RESUMO

The analysis of almost holistic food profiles has developed considerably over the last years. This has also led to larger amounts of data and the ability to obtain more information about health-beneficial and adverse constituents in food than ever before. Especially in the field of proteomics, software is used for evaluation, and these do not provide specific approaches for unique monitoring questions. An additional and more comprehensive way of evaluation can be done with the programming language Python. It offers broad possibilities by a large ecosystem for mass spectrometric data analysis, but needs to be tailored for specific sets of features, the research questions behind. It also offers the applicability of various machine-learning approaches. The aim of the present study was to develop an algorithm for selecting and identifying potential marker peptides from mass spectrometric data. The workflow is divided into three steps: (I) feature engineering, (II) chemometric data analysis, and (III) feature identification. The first step is the transformation of the mass spectrometric data into a structure, which enables the application of existing data analysis packages in Python. The second step is the data analysis for selecting single features. These features are further processed in the third step, which is the feature identification. The data used exemplarily in this proof-of-principle approach was from a study on the influence of a heat treatment on the milk proteome/peptidome.


Assuntos
Temperatura Alta , Leite , Peptídeos , Fluxo de Trabalho , Leite/química , Animais , Peptídeos/análise , Peptídeos/química , Biomarcadores/análise , Software , Proteômica/métodos , Espectrometria de Massas/métodos , Linguagens de Programação , Algoritmos
10.
J Proteomics ; 299: 105157, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462170

RESUMO

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteômica , Precursor de Proteína beta-Amiloide , Glicosídeos , Biomarcadores , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
11.
J Proteomics ; 299: 105158, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484873

RESUMO

Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken's growth. Despite its importance, research on broiler chicken muscle protein dynamics has mostly been limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of citrus and cucumber extracts on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. Twenty-one day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analysed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein synthesis which could be essential for improving the efficiency of broiler chicken meat production. SIGNIFICANCE: The present study constitutes the first dynamic proteomics study conducted in a farm animal species which has characterized FSR in a large number of proteins, establishing a precedent for biomarker discovery and assessment of health and growth status. Moreover, it has been evidenced that the decrease in broiler chicken breast muscle protein following an immune challenge is a coordinated event which seems to be the main cause of the decreased growth observed in these animals.


Assuntos
Galinhas , Proteínas Musculares , Animais , Galinhas/metabolismo , Proteínas Musculares/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Músculos/metabolismo , Ração Animal/análise , Carne/análise
12.
J Agric Food Chem ; 72(11): 6064-6076, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465450

RESUMO

The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.


Assuntos
Hominidae , Soroalbumina Bovina , Animais , Células Cultivadas , Meios de Cultura , Técnicas de Cultura de Células , Músculos
13.
Front Pharmacol ; 15: 1341020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469403

RESUMO

Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRß), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRß/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-ß-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRß expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRß/PI3K/AKT signaling pathway.

14.
Front Pharmacol ; 15: 1327647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545550

RESUMO

Introduction: Jinteng Qingbi granules (JTQBG), a traditional Chinese medicine formulation, are widely used for the treatment of rheumatoid arthritis (RA) due to their satisfactory therapeutic efficacy. However, the underlying mechanism of action remains unclear. This study aims to investigate the protective effects of JTQBG against RA and elucidates its potential molecular mechanisms. Methods: A collagen-induced arthritis (CIA) rat model was utilized, and JTQBG (1.25, 2.5, 5 g/kg/day) or methotrexate (MTX, 1 mg/kg/week) was orally administered. The rats' weight, arthritis index (AI), and paw volume were measured weekly. Synovial hyperplasia of the joints was detected using a small animal ultrasound imaging system. Joint destruction was assessed using an X-ray imaging system. Histopathological examinations were performed using hematoxylin-eosin (H&E), Saffron-O and fast green staining. Serum inflammatory cytokines were detected using ELISA. Furthermore, 4D label-free quantitative proteomics of synovial tissues and non-targeted metabolomics of blood serum were conducted to analyze the molecular mechanisms. Results: JTQBG exerted a significant therapeutic effect on CIA rats by reducing inflammatory cell infiltration, synovial hyperplasia, cartilage erosion, and bone destruction. It also decreased the spleen index, inhibited hyperplasia of the white pulp, and decreased the serum levels of IL-1ß and IL-18. Proteomics analysis identified 367 differentially expressed proteins (DEPs) between the Model and Normal groups, and 71 DEPs between the JTQBG and Model groups. These DEPs were significantly enriched in the NF-κB pathway. 11 DEPs were significantly reversed after treatment with JTQBG. Western blot results further validated the expression levels of Nfkb1, Pdk1, and Pecam1, and analyzed the expression levels of p-IKK, p-IκBα, and IκBα. The therapeutic efficacy of JTQBG was partly attributed to the suppression of the NF-κB pathway in synovial tissues. Serum metabolomics identified 17 potential biomarkers for JTQBG treatment of CIA rats, which were closely related to Alanine, aspartate and glutamate metabolism, Tryptophan metabolism, Ascorbate and aldarate metabolism, Arginine metabolism, and Inositol phosphate metabolism. Conclusion: Our findings demonstrated that JTQBG was effective against RA by alleviating synovial inflammation, synovial hyperplasia, and joint destruction. The anti-RA properties of JTQBG were likely attributed to the inhibition of the NF-κB pathway and the regulation of serum metabolite disorders.

15.
Front Nutr ; 11: 1372982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533461

RESUMO

A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 µg/mL Dex + 2,400 µg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 µg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.

16.
Food Res Int ; 182: 114151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519162

RESUMO

To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.


Assuntos
Camellia sinensis , Carne Vermelha , Animais , Bovinos , Proteômica , Multiômica , Carne Vermelha/análise , Chá/química , Lipídeos
17.
Talanta ; 273: 125869, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490027

RESUMO

High-throughput drug screening (HTDS) has significantly reduced the time and cost of new drug development. Nonetheless, contact-dependent cell-cell communication (CDCCC) may impact the chemosensitivity of tumour cells. There is a pressing need for low-cost single-cell HTDS platforms, alongside a deep comprehension of the mechanisms by which CDCCC affects drug efficacy, to fully unveil the efficacy of anticancer drugs. In this study, we develop a microfluidic chip for single-cell HTDS and evaluate the molecular mechanisms impacted by CDCCC using quantitative mass spectrometry-based proteomics. The chip achieves high-quality drug mixing and single-cell capture, with single-cell drug screening results on the chip showing consistency with those on the 96-well plates under varying concentration gradients. Through quantitative proteomic analysis, we deduce that the absence of CDCCC in single tumour cells can enhance their chemoresistance potential, but simultaneously subject them to stronger proliferation inhibition. Additionally, pathway enrichment analysis suggests that CDCCC could impact several signalling pathways in tumour single cells that regulate vital biological processes such as tumour proliferation, adhesion, and invasion. These results offer valuable insights into the potential connection between CDCCC and the chemosensitivity of tumour cells. This research paves the way for the development of single-cell HTDC platforms and holds the promise of advancing tumour personalized treatment strategies.


Assuntos
Neoplasias , Proteômica , Humanos , Avaliação Pré-Clínica de Medicamentos , Comunicação Celular , Ensaios de Triagem em Larga Escala/métodos
18.
Food Chem ; 448: 139119, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547703

RESUMO

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Assuntos
Peptídeos Antimicrobianos , Búfalos , Colostro , Leite , Proteômica , Proteínas do Soro do Leite , Animais , Colostro/química , Colostro/metabolismo , Feminino , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/análise , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/metabolismo , Leite/química , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/análise , Soro do Leite/química , Soro do Leite/metabolismo
19.
Chemosphere ; 354: 141633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442772

RESUMO

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Assuntos
Proteômica , Triptofano , Triptofano/metabolismo , Esgotos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Extratos Vegetais
20.
J Ethnopharmacol ; 329: 118099, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554853

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY: To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS: Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS: 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION: Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas , Estrogênios , Simulação de Acoplamento Molecular , Farmacologia em Rede , Psoríase , Transdução de Sinais , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Estrogênios/farmacologia , Estrogênios/metabolismo , Células HaCaT , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA