RESUMO
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Assuntos
Eferocitose , Ácidos Graxos Ômega-3 , Humanos , Inflamação , Macrófagos , Ácidos Graxos Ômega-3/uso terapêutico , Anti-InflamatóriosRESUMO
Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.
Assuntos
Antiasmáticos , Asma , Lipoxinas , Camundongos , Animais , Lipoxinas/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Antiasmáticos/efeitos adversos , Pulmão/metabolismo , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de DoençasRESUMO
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Desconforto Respiratório , Animais , Camundongos , Encéfalo , Cromatografia Líquida , Inflamação , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos Knockout , Receptores do Leucotrieno B4 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Espectrometria de Massas em TandemRESUMO
The fungal species Candida parapsilosis and the bacterial species Staphylococcus aureus may be responsible for hospital-acquired infections in patients undergoing invasive medical interventions or surgical procedures and often coinfect critically ill patients in complicating polymicrobial biofilms. The efficacy of the re-purposing therapy has recently been reported as an alternative to be used. PUFAs (polyunsaturated fatty acids) may be used alone or in combination with currently available traditional antimicrobials to prevent and manage various infections overcoming antimicrobial resistance. The objectives of the study were to evaluate the effects of Resolvin D1 (RvD1) as an antimicrobial on S. aureus and C. parapsilosis, as well as the activity against the mixed biofilm of the same two species. Microdilution assays and time-kill growth curves revealed bacterial and fungal inhibition at minimum concentration values between 5 and 10 µg mL-1. In single-species structures, an inhibition of 55% and 42% was reported for S. aureus and C. parapsilosis, respectively. Moreover, RvD1 demonstrated an eradication capacity of 60% and 80% for single- and mixed-species biofilms, respectively. In association with the inhibition activity, a downregulation of genes involved in biofilm formation as well as ROS accumulation was observed. Eradication capability was confirmed also on mature mixed biofilm grown on silicone platelets as shown by scanning electron microscopy (SEM). In conclusion, RvD1 was efficient against mono and polymicrobial biofilms in vitro, being a promising alternative for the treatment of mixed bacterial/fungal infections.
Assuntos
Coinfecção , Ácidos Graxos Ômega-3 , Humanos , Staphylococcus aureus , Ácidos Docosa-Hexaenoicos/farmacologia , Eicosanoides , Biofilmes , Candida parapsilosisRESUMO
PURPOSE: Here, we explored the protective effects of resolvin D1 (RvD1) in Pseudomonas aeruginosa (PA) keratitis. METHODS: C57BL/6 (B6) mice were used as an animal model of PA keratitis. Plate counting and clinical scores were used to assess the severity of the infection and the therapeutic effects of RvD1 in the model. Myeloperoxidase assay was used to detect neutrophil infiltration and activity. Quantitative PCR (qPCR) was used to examine the expression of proï¬ammatory and anti-inï¬ammatory mediators. Immunoï¬uorescence staining and qPCR were performed to identify macrophage polarization. RESULTS: RvD1 treatment alleviated PA keratitis severity by decreasing corneal bacterial load and inhibiting neutrophil infiltration in the mouse model. Furthermore, RvD1 treatment decreased mRNA levels of TNF-α, IFN-γ, IL-1ß, CXCL1, and S100A8/9 while increasing those of IL-1RA, IL-10, and TGF-ß1. RvD1 treatment also reduced the aggregation of M1 macrophages and increased that of M2 macrophages. RvD1 provided an auxiliary effect in gatifloxacin-treated mice with PA keratitis. CONCLUSION: Based on these findings, RvD1 may improve the prognosis of PA keratitis by inhibiting neutrophil recruitment and activity, dampening the inï¬ammatory response, and promoting M2 macrophage polarization. Thus, RvD1 may be a potential complementary therapy for PA keratitis.
Assuntos
Ceratite , Infecções por Pseudomonas , Camundongos , Animais , Pseudomonas aeruginosa , Camundongos Endogâmicos C57BL , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Ácidos Docosa-Hexaenoicos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologiaRESUMO
Resolvin D3 (RD3), an endogenous lipid mediator derived from omega-3 fatty acids, has been documented to attenuate inflammation in various disease models. Although it has been reported that omega-3 fatty acids attenuate metabolic disorders, the roles of RD3 in insulin signaling in skeletal muscle and hepatic lipid metabolism remain unclear. In the current study, we examined the role of RD3 in skeletal muscle insulin resistance and hepatic steatosis using in vitro and in vivo obesity models. In mouse primary hepatocytes, RD3 treatment reduced lipid accumulation and the production of lipogenic proteins (processed SREBP1 and SCD1) while improving insulin signaling in C2C12 myocytes. Furthermore, RD3 treatment ameliorated palmitate-induced ER stress markers (phospho-eIF2α and CHOP) in mouse primary hepatocytes and C2C12 myocytes. Treatment with RD3 increased phospho-AMPK expression and autophagy markers (LC3 conversion, p62 degradation, and autophagosome formation). AMPK siRNA or 3-MA reduced the effects of RD3 on C2C12 myocytes and mouse primary hepatocytes treated with palmitate. Finally, we confirmed the therapeutic effects of RD3 on skeletal muscle insulin resistance and hepatic lipid metabolism in high-fat diet (HFD)-fed mice. In vivo transfection-mediated suppression of AMPK restored all these changes in animal models. The results of the present study suggest that RD3 alleviates insulin resistance in skeletal muscle and hepatic steatosis via AMPK/autophagy signaling and provides an effective and safe therapeutic approach for treating metabolic disorders, including insulin resistance, type 2 diabetes, and NAFLD.
Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Palmitatos/uso terapêuticoRESUMO
BACKGROUND: Metabolic syndrome (MetS) exacerbates susceptibility to inhalation exposures such as particulate air pollution, however, the mechanisms responsible remain unelucidated. Previously, we determined a MetS mouse model exhibited exacerbated pulmonary inflammation 24 h following AgNP exposure compared to a healthy mouse model. This enhanced response corresponded with reduction of distinct resolution mediators. We hypothesized silver nanoparticle (AgNP) exposure in MetS results in sustained pulmonary inflammation. Further, we hypothesized treatment with resolvin D1 (RvD1) will reduce exacerbations in AgNP-induced inflammation due to MetS. RESULTS: To evaluate these hypotheses, healthy and MetS mouse models were exposed to vehicle (control) or AgNPs and a day later, treated with resolvin D1 (RvD1) or vehicle (control) via oropharyngeal aspiration. Pulmonary lung toxicity was evaluated at 3-, 7-, 14-, and 21-days following AgNP exposure. MetS mice exposed to AgNPs and receiving vehicle treatment, demonstrated exacerbated pulmonary inflammatory responses compared to healthy mice. In the AgNP exposed mice receiving RvD1, pulmonary inflammatory response in MetS was reduced to levels comparable to healthy mice exposed to AgNPs. This included decreases in neutrophil influx and inflammatory cytokines, as well as elevated anti-inflammatory cytokines. CONCLUSIONS: Inefficient resolution may contribute to enhancements in MetS susceptibility to AgNP exposure causing an increased pulmonary inflammatory response. Treatments utilizing specific resolution mediators may be beneficial to individuals suffering MetS following inhalation exposures.
Assuntos
Síndrome Metabólica , Nanopartículas Metálicas , Pneumonia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Camundongos , Pneumonia/induzido quimicamente , Prata/toxicidadeRESUMO
According to current research, cancer cell growth is suppressed by ω-3 fatty acids, which are essential fatty acids. On the other hand, ω-3 fatty acids are metabolized to bioactivities in vivo. A systematic evaluation of the ability of ω-3 fatty acids and their metabolites to suppress cancer cell growth has not been sufficiently conducted. Our work evaluated the effect of ω-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid), trans fatty acid, and the metabolites (Resolvin E1, Maresin 1) on cancer cell growth suppressibility. Our results suggest that there may be optimal fatty acids depending on the kind of cancer cells, the presence or absence of hydroxyl group, and the double bond structure involved.
Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Ácidos Graxos trans , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos , Ácidos Graxos Ômega-3/farmacologia , Neoplasias/tratamento farmacológicoRESUMO
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Mediadores da Inflamação/uso terapêutico , ImunidadeRESUMO
Chronic inflammatory diseases are the major cause of morbidity and mortality in the aging population worldwide. Chronic inflammation reflects a deficiency in the resolution phase of the acute inflammatory response, which then fails to engage the adaptive immune system accordingly. Resolution of inflammation is a tightly regulated biological pathway that sequentially aids in eliminating the inducing agent and orchestrates clearance of effete immune cells to promote the return to tissue homeostasis. The lipid mediators of resolution of inflammation comprise a family of specialized pro-resolving mediators (SPMs). The synthesis of SPMs occurs via enzymatic conversion of essential omega-6 (n-6) and omega-3 (n-3) fatty acids. SPMs have anti-inflammatory, pro-resolving and tissue regenerating properties. A large number of in vitro and in vivo studies have unveiled the mechanism of action of many SPMs. Here, we focus on the actions of SPMs in health and chronic disease models as well as their potential as therapeutic agents in ongoing and future clinical trials.
Assuntos
Ácidos Graxos Ômega-3 , Inflamação , Idoso , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácidos Docosa-Hexaenoicos , Eicosanoides , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismoRESUMO
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Assuntos
Eicosanoides , Inflamação , Biomarcadores , Cromatografia Líquida/métodos , Humanos , Inflamação/diagnóstico , Fator de Ativação de Plaquetas , PrognósticoRESUMO
Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.
RESUMO
Obesity-associated type 2 diabetes mellitus is associated with the development of insulin resistance. Among several metabolites, resolvins that are metabolites of eicosapentaenoic acid have been shown to exert insulin-sensitizing effects; however, the role of resolvin E3 (RvE3) in glucose metabolism has not been studied. In this study, the effect of RvE3 on glucose metabolism in mice with high-fat diet-induced obesity and 3T3L1 adipocytes was studied. C57BL/6 mice fed a high-fat diet were administered RvE3, for which insulin tolerance, oral glucose tolerance tests, and the homeostasis model assessment of insulin resistance, were performed. RvE3 treatment significantly improved insulin sensitivity and glucose tolerance and regulated protein kinase B (Akt) phosphorylation in the adipose tissue. Moreover, RvE3 treatment enhanced the insulin-stimulated glucose transporter 4 (Glut4) translocation, glucose uptake, phosphatidylinositol-3-kinase (PI3K) activity, and Akt phosphorylation in 3T3L1 adipocytes, whereas a PI3K inhibitor inhibited the enhanced insulin-stimulated glucose uptake induced by RvE3. These findings indicate that RvE3 likely improves insulin sensitivity, resulting in the upregulation of glucose uptake in adipocytes by activating the PI3K/Akt signaling pathways. Collectively, the findings of this study show that RvE3 may play a role in glucose homeostasis and could be used as a potential therapeutic target for developing treatments for obesity-associated diabetes.
Assuntos
Adipócitos/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Hipoglicemiantes/farmacologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
OBJECTIVE: Osteoarthritis (OA) is a disease characterized by cartilage degradation and structural destruction. Resolvin D1 (RvD1), a specialized proresolving mediator (SPM) derived from omega-3 fatty acids, has been preliminarily proven to show anti-inflammatory and antiapoptotic effects in OA. However, the mechanisms of RvD1 in osteoarthritis fibroblast-like synoviocytes (OA-FLSs) need to be clarified. METHODS: Synovial and fibroblast-like synoviocytes were obtained from OA patients and healthy individuals. MTT and EdU assays were performed to determine cell cytotoxicity and proliferation. The protein expression levels of cyclin D1, cyclin B1, PCNA, p53, MMP-13, YAP, p-YAP, and LATS1 were detected by western blot analysis. The release levels of IL-1ß were detected by ELISA. The cell cycle was assessed by flow cytometry. Immunofluorescence was used to detect the levels of YAP in OA-FLSs. RESULTS: RvD1 inhibited OA-FLS proliferation and reduced MMP-13 and IL-1ß secretion in the concentrations of 20 nM and 200 nM. Furthermore, RvD1 induced G2 cell cycle arrest in OA-FLSs via the Hippo-YAP signaling pathway and promoted YAP phosphorylation. However, RvD1 had no effects on normal FLSs. CONCLUSIONS: RvD1 inhibits OA-FLS proliferation by promoting YAP phosphorylation and protects chondrocytes by inhibiting the secretion of MMP-13 and IL-1ß, providing an experimental basis for RvD1 treatment of OA.
Assuntos
Osteoartrite , Sinoviócitos , Proliferação de Células , Células Cultivadas , Ácidos Docosa-Hexaenoicos , Fibroblastos , Humanos , Osteoartrite/tratamento farmacológico , Transdução de Sinais , Membrana SinovialRESUMO
Neutrophils are key players in inflammation initiation and resolution. Little attention has been paid to the detailed biosynthesis of specialized pro-resolving mediators (SPM) in these cells. We investigated SPM formation in human polymorphonuclear leukocytes (PMNL), in broken PMNL preparations and recombinant human 5-lipoxygenase (5-LO) supplemented with the SPM precursor lipids 15-Hydroxyeicosatetraenoic acid (15-HETE), 18-Hydroxyeicosapentaenoic acid (18-HEPE) or 17-Hydroxydocosahexaenoic acid (17-HDHA). In addition, the influence of 5-LO activating protein (FLAP) inhibition on SPM formation in PMNL was assessed. Intact human PMNL preferred ARA over DHA for lipid mediator formation. In contrast, in incubations supplemented with the SPM precursor lipids DHA-derived 17-HDHA was preferred over 15-HETE and 18-HEPE. SPM formation in the cells was dominated by 5(S),15(S)-diHETE (800 pmol/20 mio cells) and Resolvin D5 (2300 pmol/20 mio cells). Formation of lipoxins (<10 pmol/20 mio cells), E-series (<70 pmol/20 mio cells) and other D-series resolvins (<20 pmol/20 mio cells) was low and only detected after addition of the precursor lipids. Upon destruction of cell integrity, formation of lipoxins and 5(S),15(S)-diHETE increased while formation of 17-HDHA- and 18-HEPE-derived SPMs was attenuated. Recombinant 5-LO did not accept the precursors for SPM formation and FLAP inhibition prevented the formation of the 5-LO-dependent SPMs. Together with the data on FLAP inhibition our results point to unknown factors that control SPM formation in human neutrophils and also render lipoxin and 5(S),15(S)-diHETE formation independent of membrane association and FLAP when cellular integrity is destroyed.
Assuntos
Ácidos Docosa-HexaenoicosRESUMO
Chronic inflammation results from excessive pro-inflammatory signaling and the failure to resolve the inflammatory reaction. Lipid mediators orchestrate both the initiation and resolution of inflammation. Switching from pro-inflammatory to pro-resolving lipid mediator biosynthesis is considered as efficient strategy to relieve chronic inflammation, though drug candidates exhibiting such features are unknown. Starting from a library of Vietnamese medical plant extracts, we identified isomers of the biflavanoid 8-methylsocotrin-4'-ol from Dracaena cambodiana, which limit inflammation by targeting 5-lipoxygenase and switching the lipid mediator profile from leukotrienes to specialized pro-resolving mediators (SPM). Elucidation of the absolute configurations of 8-methylsocotrin-4'-ol revealed the 2S,γS-isomer being most active, and molecular docking studies suggest that the compound binds to an allosteric site between the 5-lipoxygenase subdomains. We identified additional subordinate targets within lipid mediator biosynthesis, including microsomal prostaglandin E2 synthase-1. Leukotriene production is efficiently suppressed in activated human neutrophils, macrophages, and blood, while the induction of SPM biosynthesis is restricted to M2 macrophages. The shift from leukotrienes to SPM was also evident in mouse peritonitis in vivo and accompanied by a substantial decrease in immune cell infiltration. In summary, we disclose a promising drug candidate that combines potent 5-lipoxygenase inhibition with the favorable reprogramming of lipid mediator profiles.
RESUMO
OBJECTIVES: Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma. METHODS: Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion. RESULTS: We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2). CONCLUSIONS: Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice.
Assuntos
Ácidos Graxos Ômega-3 , Espectrometria de Massas em Tandem , Adolescente , Animais , Cromatografia Líquida de Alta Pressão , Eicosanoides , Humanos , Inflamação , Camundongos , Espectrometria de Massas em Tandem/métodosRESUMO
Atrial fibrillation (AF) is the most common type of cardiac rhythm disturbance. At the cellular level, excessive ROS generation during AF is associated with ER stress, which induces an inflammatory response by activating the unfolded protein response (UPR) pathway and the nuclear factor-kappa B (NF-kB) signaling pathway. Activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome has been linked to the pathogenesis of AF through NF-kB activation and inflammatory cytokine secretion. It has been shown that NLRP3 inflammasome activation by endoplasmic reticulum (ER) stress is dependent on NF-kB activation. The anti-inflammatory role of resolvin D1 (RvD1), a pro-resolving mediator derived from omega-3 fatty acids, has demonstrated that the NF-κB/NLRP3 inflammasome pathway in different tissues is attenuated after treatment with RvD1. However, the mechanism of the anti-inflammatory activity of RvD1 in AF has not been clarified. This review suggests that RvD1 may inhibit ER stress-induced NLRP3 inflammasome through suppressing NF-κB in cardiac tissue and, thus ameliorate AF.
Assuntos
Fibrilação Atrial/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Fibrilação Atrial/fisiopatologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Resolvin D1 (RvD1) is an endogenous lipid mediator that originated from docosahexaenoic acid that stimulates a bimodal mechanism in the anti-inflammatory activity in addition to regulation of the inflammatory reaction. The study aimed at assessing the tissue level of RvD1 in psoriasis to study its role in the etiopathogenesis of psoriasis, studying the action of NB-UVB on the level of resolvin D1 in psoriasis, and raising the possibility of using resolvin D1 as a new therapy for psoriasis in the future. This case-control study included 20 psoriasis patients and 20 healthy controls. Patients took narrowband ultraviolet B (NB-UVB) for 36 sessions. Skin biopsies were taken before and after treatment from patients and from controls to assess the expression of RvD1 by a quantitative real-time polymerase chain reaction. Our findings revealed a statistically significant difference (P < .001) between psoriasis patients (either before or after treatment) and controls with lower levels of RvD1 in psoriasis patients. On comparing the RvD1 levels in psoriasis patients before and after treatment, a statistically significant increase was detected after treatment (P < .001). Tissue RvD1 levels in psoriasis patients were lower than healthy controls and increased after NB-UVB treatment in psoriasis patients. Thus, it is suggested that RvD1 might have a role in the etiopathogenesis of psoriasis. Moreover, the significantly up-regulated tissue levels of RvD1 in patients after treatment with NB-UVB highlighted a novel mechanism of phototherapy-mediated response in psoriasis by up-regulating RvD1 level.
Assuntos
Psoríase , Terapia Ultravioleta , Estudos de Casos e Controles , Ácidos Docosa-Hexaenoicos , Humanos , Fototerapia , Psoríase/diagnóstico , Psoríase/terapiaRESUMO
Resolvins are a group of specialized proresolving lipid mediators (SPMs) enzymatically produced from omega-3 fatty acids during acute inflammation response to infections or tissue injury. Resolvin D1 (RvD1) is one of resolvins and is well studied in resolution of inflammation to treat inflammatory diseases. Resolution of inflammation includes the inhibition of polymorphonuclear leukocyte recruitment and reduced cytokine production. However, effective delivery of RvD1 to inflammatory tissues is challenging because of its lack of tissue targeting and poor physicochemical properties. Here, we proposed nanovesicles made from human neutrophil membrane which can specifically target inflamed tissues, and we loaded RvD1 on the surface of nanovesicles and antibiotic (ceftazidime, CEF) inside nanovesicles for improved treatment of bacterial infections. In a mouse model of bacterium-induced peritonitis, we demonstrated that human neutrophil cell membrane-formed vesicles (NMVs) enhanced inflammation resolution and bacterial killing after co-delivery of RvD1 and CEF. Our studies reveal that neutrophil nanovesicles may be critical for enhanced therapy to infectious diseases.