Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662176

RESUMO

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Assuntos
Conservação dos Recursos Naturais , Germinação , Plantas Medicinais , Sementes , Swertia , Plantas Medicinais/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Swertia/fisiologia , Índia , Plântula/crescimento & desenvolvimento , Ecossistema , Dormência de Plantas
2.
BMC Ecol Evol ; 24(1): 50, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649814

RESUMO

BACKGROUND: Land uses such as crop production, livestock grazing, mining, and urban development have contributed to degradation of drylands worldwide. Loss of big sagebrush (Artemisia tridentata) on disturbed drylands across the western U.S. has prompted massive efforts to re-establish this foundational species. There has been growing interest in avoiding the severe limitations experienced by plants at the seed and seedling stages by instead establishing plants from containerized greenhouse seedlings ("tubelings"). In some settings, a potential alternative approach is to transplant larger locally-collected plants ("wildlings"). We compared the establishment of mountain big sagebrush (A. tridentata ssp. vaseyana) from tubelings vs. wildlings in southeastern Idaho. A mix of native and non-native grass and forb species was drill-seeded in a pasture previously dominated by the introduced forage grass, smooth brome (Bromus inermis). We then established 80 m x 80 m treatment plots and planted sagebrush tubelings (n = 12 plots, 1200 plants) and wildlings (n = 12 plots, 1200 plants). We also established seeded plots (n = 12) and untreated control plots (n = 6) for long-term comparison. We tracked project expenses in order to calculate costs of using tubelings vs. wildlings as modified by probability of success. RESULTS: There was high (79%) tubeling and low (10%) wildling mortality within the first year. Three years post-planting, chance of survival for wildlings was significantly higher than that of tubelings (85% and 14% respectively). Despite high up-front costs of planting wildlings, high survival rates resulted in their being < 50% of the cost of tubelings on a per-surviving plant basis. Additionally, by the third year post-planting 34% of surviving tubelings and 95% of surviving wildlings showed evidence of reproduction (presence / absence of flowering stems), and the two types of plantings recruited new plants via seed (3.7 and 2.4 plants, respectively, per surviving tubeling/wildling). CONCLUSIONS: Our results indicate that larger plants with more developed root systems (wildlings) may be a promising avenue for increasing early establishment rates of sagebrush plants in restoration settings. Our results also illustrate the potential for tubelings and wildlings to improve restoration outcomes by "nucleating" the landscape via recruitment of new plants during ideal climate conditions.


Assuntos
Artemisia , Plântula , Plântula/crescimento & desenvolvimento , Idaho , Conservação dos Recursos Naturais/métodos
3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646751

RESUMO

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Assuntos
Caragana , Carbono , Florestas , Nitrogênio , Compostos Orgânicos , Fósforo , Solo , China , Solo/química , Carbono/análise , Caragana/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Compostos Orgânicos/análise , Nutrientes/análise , Recuperação e Remediação Ambiental/métodos , Sequestro de Carbono , Ecossistema
4.
Int J Phytoremediation ; 26(9): 1518-1525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563239

RESUMO

Heavy metal-enriched fly ash (FA) deposits are recognized as hazardous contaminated sites on the earth, which pollute our ecosystems. Consequently, the present investigation was carried out to explore the phytoremediation potential of naturally growing medicinal plants in the FA dumpsite. This present study chose two native medicinal plants i.e., Bacopa monnieri and Acmella oleracea found to be naturally colonizing abundantly on FA dumpsite to assess heavy metal accumulation. FA sample of B. monnieri thriving sites found to have metal content in order Mn (216.6)> Cr (39.27)> Zn (20.8)> Ni (16.1)> Cu (15.03)> Co (6.7)> Pb (5.43) whereas for A. oleracea FA dumpsites, the order of metal availability was Mn (750.3)> B (54.5)>Cr (37.2)>Zn (31.33)> Cu (18.7)> Ni (16.93)> Co (7.7)>Pb (4.23). In B. monnieri, higher concentrations of Cr and Mn were observed in the shoot in comparison to the root, indicative of its potential as a hyperaccumulator plant. Conversely, in A. oleracea, greater amounts of Pb were detected in the shoot relative to the root. Hence, it is recommended that B. monnieri and A. oleracea grow on such heavy metal-enriched substrates should be avoided for medicinal purposes; however, these plants can be used for phytoremediation purposes.


Fly ash phytoremediation through natural colonizer plant species is limited.Native colonizing plant species on fly ash has a pivotal role in phytoremediation.Naturally colonizing medicinal plants were dominant over the Fly ash dumpsites.Bacopa monnieri and Acmella oleracea have phytoremediation potential on fly ash.Indeed, fly ash-grown medicinal plants should not be used by local communities.


Assuntos
Biodegradação Ambiental , Cinza de Carvão , Metais Pesados , Plantas Medicinais , Poluentes do Solo , Plantas Medicinais/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Bacopa/metabolismo
5.
Environ Sci Pollut Res Int ; 31(17): 25671-25687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483715

RESUMO

This study documents the socio-economic baselines in selected oil-impacted communities prior to the commencement of the Ogoni clean-up and restoration project. Adopting mixed approach consisting of semi-structured interviews, focus group discussions (FGDs), key informant interviews (KIIs), and household surveys, we surveyed the pre-remediation socio-economic conditions in the Ogoniland communities between July 2018 and March 2019. Results indicated that almost all respondents (99.6%) agreed that the smell of petroleum products or crude oil was evident in the air they breathed even as there were visible black particles (soot) in the respondents' nostrils, on their clothes, and in water. The respondents described the ambient air as smoky and choked with an offensive smell. The household waters were smelly, brownish, or oily, and most respondents (76%) cannot afford to treat their water. Forty-two percent of the respondents who relied on fishing and farming for a living sought for alternative means of subsistence and acknowledged that oil pollution caused stunted growth and low crop yield. The majority of respondents (91%) reported falling fish catches, while the fish caught smell and taste of oil, lowering their market value and posing a potential health risk to consumers. It is evident that oil pollution has impacted the socio-ecological values and sustainable livelihood in Ogoniland. This study provides baseline data for monitoring post-remediation socio-economic improvements in Ogoniland. It also highlights areas of urgent intervention to improve livelihood, and access to basic amenities (e.g., potable drinking water), waste management infrastructure, and statutory policy changes for sustainable development in Ogoniland.


Assuntos
Poluição por Petróleo , Petróleo , Animais , Nigéria , Níger , Poluição por Petróleo/análise , Fatores Socioeconômicos , Água
6.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 19-27, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475947

RESUMO

At present, the commonly used clinical protocols of oral comestic restoration are mostly based on the aesthetic indicators proposed by Western developed countries (referred to as Western aesthetics). Mechanically copying the Western aesthetic scheme, ignoring the difference between it and the Chinese oral aesthetic indicators (referred to as Chinese aesthetics), is unable to effectively support personalized cosmetic restoration diagnosis and treatment. In addition, new technologies and new solutions for cosmetic restoration, which are developing rapidly in recent years, are emerging one after another, but many popular concepts are confusing and lack of proper hierarchical diagnosis and treatment norms, and there is indeed an urgent need for discussion and clarity. From the perspective of serving clinical application, this paper discusses the deficiencies of the Chinese translation of the word "aesthetics", the diffe-rence and connection between aesthetics and cosmetology, and the relationship between cosmetic restoration and fixed restoration. It also discusses the difference between anterior teeth, esthetic zone and exposed zone, the diagnostic and therapeutic value of oral aesthetic analysis, as well as the application methods of desensitization, suggestion, and other therapies in difficult oral cosmetic restoration cases. We further introduce the decision tree and the clinical pathway for restoration and reconstruction of teeth in exposed zone guided by aesthetic analysis, and introduce the clinical process of aesthetic analysis and evaluation, the clinical triclassification of oral cosmetic restoration, and the corresponding clinical classification diagnosis and treatment points.


Assuntos
Procedimentos Clínicos , Estética Dentária , Implantação Dentária Endóssea , Árvores de Decisões
7.
Ying Yong Sheng Tai Xue Bao ; 35(2): 339-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523090

RESUMO

Forest type and stand age are important biological factors affecting soil enzyme activities. However, the changes in soil enzyme activities across stand ages and underlying mechanisms under the two forest restoration strate-gies of plantations and natural secondary forests remain elusive. In this study, we investigated the variations of four soil enzyme activities including cello-biohydrolase (CBH), ß-1,4-glucosidase (ßG), acid phosphatase (AP) and ß-1,4-N-acetylglucosaminidase (NAG), which were closely associated with soil carbon, nitrogen, and phosphorus cycling, across Cunninghamia lanceolata plantations and natural secondary forests (5, 8, 21, 27 and 40 years old). The results showed that soil enzyme activities showed different patterns across different forest types. The acti-vities of AP, ßG and CBH in the C. lanceolata plantations were significantly higher than those in the natural secon-dary forests, and there was no significant difference in the NAG activity. In the plantations, AP activity showed a decreasing tendency with the increasing stand ages, with the AP activity in the 5-year-old plantations significantly higher than other stand ages by more than 62.3%. The activities of NAG and CBH decreased first and then increased, and ßG enzyme activity fluctuated with the increasing stand age. In the natural secondary forests, NAG enzyme activity fluctuated with the increasing stand age, with that in the 8-year-old and 27-year-old stand ages being significantly higher than the other stand ages by more than 14.9%. ßG and CBH enzyme activities increased first and then decreased, and no significant difference was observed in the AP activity. Results of the stepwise regression analyses showed that soil predictors explained more than 34% of the variation in the best-fitting models predicting soil enzyme activities in the C. lanceolata plantations and natural secondary forests. In conclusion, there would be a risk of soil fertility degradation C. lanceolata plantations with the increasing stand age, while natural secondary forests were more conducive to maintaining soil fertility.


Assuntos
Cunninghamia , Humanos , Adulto , Pré-Escolar , Criança , Solo , Florestas , Nitrogênio/análise , Fósforo/análise , Carbono/análise , Microbiologia do Solo , China
8.
Mol Nutr Food Res ; 68(7): e2400033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483096

RESUMO

SCOPE: Consumption of inulin could affect the intestinal microbiota composition. Hereby, it is aimed to investigate the intestinal microbial community restoration process when the inulin supplementation is terminated (i.e., the secondary effect). METHODS AND RESULTS: The current study investigates the response and restoration of intestinal microbiota to/after high (Inulin-H) and low (Inulin-L) dosage of inulin supplementation or sequential antibiotics and inulin (Anti-Inulin-L) supplementation, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. The number of significantly changed genera in response to inulin is highest in Anti-Inulin-L (n = 66) group, followed by Inulin-H (n = 51) and Inulin-L (n = 38) group. After inulin supplementation stops, microbiota of all studied groups tend to recover to their original states, with highest percentage of inulin-responding microbes stay significantly different at Anti-Inulin-L (93.94%) group, followed by Inulin-H (74.51%) and Inulin-L (44.12%) groups. Of note, the relative abundance of some non-inulin-responding taxa significantly increases during restoration. CONCLUSION: Sequential antibiotics and inulin supplementation induce greatest changes in the intestinal microbial composition, followed by high and low dosage of inulin. Additionally, the changes induce by supplemented inulin in the intestinal microbial community, provide a chance for some microbes to outcompete the other microbes during the spontaneous restoration.


Assuntos
Microbioma Gastrointestinal , Inulina , Camundongos , Animais , Inulina/farmacologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Antibacterianos/farmacologia
9.
J Environ Manage ; 353: 120216, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290260

RESUMO

Biological invasions degrade ecosystems, negatively affecting human well-being and biodiversity. Restoration of invaded agricultural ecosystems is among specific goals of European Union Biodiversity Strategy. Successful restoration of invaded lands is a long-term process that requires monitoring to assess the effects of interventions. Here, we present the results of a long-term experiment (8 years) on restoration of semi-natural grassland on abandoned arable field overgrown by invasive Solidago species (S. gigantea and S. canadensis). We examined effect of different invaders removal methods (rototilling, turf stripping, herbicide application) and seed application practices (commercial seed mixture, fresh hay) on changes in species composition and taxonomic diversity of restored vegetation. Our results showed a positive effect of grassland restoration on taxonomic diversity and species composition, manifested by a decrease in Solidago cover and an increase in cover and richness of target graminoids and forbs characteristic of grassland. The seed source had a longer lasting and still observable effect on the vegetation composition than the Solidago removal treatments, which ceased to differ significantly in their influence after the first few years. Applying fresh hay as a seed source increased the cover of grassland species such as Arrhenatherum elatius and Poa pratensis. For commercial seed mixture, we observed the high cover of Lolium perenne and Schedonorus pratensis (introduced with seed mixture) at the beginning and the slow decrease along the experiment course. The most striking effect was the fresh hay with herbicide application, which resulted in the lowest Solidago cover and the highest cover of target graminoids. Nonetheless, with years the non-chemical methods, including no treatment, gives comparable to herbicide effectiveness of restoration. Overall, during the experiment, alpha diversity increased, while beta and gamma diversity reached a species maximum in the third year, and then decreased. In conclusion, this study gives guidance to successful restoration of species-rich grasslands on sites invaded by Solidago. It should be emphasised that short-term effect differ considerably from long-term outputs, especially highlighting the importance of seed source, as well as effectiveness of environmentally friendly methods such as regular mowing to control the invader.


Assuntos
Herbicidas , Lolium , Poa , Solidago , Humanos , Espécies Introduzidas , Ecossistema , Pradaria , Solo/química , Biodiversidade , Plantas
10.
PeerJ ; 12: e16766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250730

RESUMO

Inland salt marsh wetlands have very important ecological functions in semi-arid areas. However, degradation and soil desertification have impacted these areas, making it necessary to study the impact of wetland restoration years on the soil quality of salt marsh wetland. We used remote sensing methods, field surveys, and inquiries to examine the seasonal profile effects of two-, four-, and six-year restoration periods on total nitrogen (TN), total phosphorus (TP) and the ratio of nitrogen to phosphorus (N:P) in P. australis and S. triqueter wetland natural states. Our results showed that soil TN in P. australis wetland in restored conditions was higher than that in natural conditions. The average soil TP of the S. triqueter wetlands at 0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm layers was 0.36 g/kg, 0.31 g/kg, 0.21 g/kg, and 0.17 g/kg s in September, respectively. The soil TP of the S. triqueter wetland increased slightly over the entire growing season. The restoration years had a great influence on the soil TP of the S. triqueter wetland from May to July. The soil TN in the P. australis wetland was almost restored to its natural condition in each layer during the six-year restoration period. The soil TP of the S. triqueter wetland was higher in the restored two-year period and showed a decreasing trend with an increased soil depth. Our conclusions can significantly guide the restoration of inland salt marsh wetlands.


Assuntos
Nitrogênio , Áreas Alagadas , Fósforo , Projetos de Pesquisa , Solo
11.
J Environ Manage ; 352: 120053, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211429

RESUMO

The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.


Assuntos
Fósforo , Poluentes Químicos da Água , Bentonita , Lantânio , Poluentes Químicos da Água/análise , Lagos , Água
12.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756614

RESUMO

Heavy metal pollution of soil, especially by lead (Pb) and cadmium (Cd), is a serious problem worldwide. The application of safe chelating agents, combined with the growing of tolerant trees, constitutes an approach for phytoremediation of heavy-metal-contaminated soil. This study aimed to determine whether the two safe chelators, tetrasodium glutamate diacetate (GLDA) and citric acid (CA), could improve the phytoremediation capacity of black locust (Robinia pseudoacacia L.) in a Pb-Cd-contaminated soil and to find the key factors affecting the biomass accumulation of stressed black locust. In Pb- and Cd-stressed black locust plants, medium- and high-concentration GLDA treatment inhibited the growth, chlorophyll synthesis and maximum photochemical efficiency (Fv/Fm), promoted the absorption of Pb and Cd ions and resulted in the shrinkage of chloroplasts and starch grains when compared with those in Pb- and Cd-stressed plants that were not treated with GLDA. The effects of CA on plant growth, ion absorption, chlorophyll content, chlorophyll fluorescence and organelle size were significantly weaker than those of GLDA. The effect of both agents on Cd absorption was greater than that on Pb absorption in all treatments. The levels of chlorophyll a and plant tissue Cd and rates of starch metabolism were identified as the key factors affecting plant biomass accumulation in GLDA and CA treatments. In the future, GLDA can be combined with functional bacteria and/or growth promoters to promote the growth of Pb- and Cd-stressed plants and to further improve the soil restoration efficiency following pollution by heavy metals. Application of CA combined with the growing of black locust plants has great potential for restoring the Cd-polluted soil. These findings also provide insights into the practical use of GLDA and CA in phytoremediation by R. pseudoacacia and the tolerant mechanisms of R. pseudoacacia to Pb-Cd-contaminated soil.


Assuntos
Metais Pesados , Robinia , Cádmio/metabolismo , Plântula , Quelantes/metabolismo , Quelantes/farmacologia , Clorofila A/metabolismo , Clorofila A/farmacologia , Chumbo/metabolismo , Metais Pesados/metabolismo , Clorofila/metabolismo , Solo/química , Amido/metabolismo , Biodegradação Ambiental
13.
J Environ Manage ; 351: 119758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086118

RESUMO

Targeted conservation approaches seek to focus resources on areas where they can deliver the greatest benefits and are recognized as key to reducing nonpoint source nutrients from agricultural landscapes into sensitive receiving waters. Moreover, there is growing recognition of the importance and complementarity of in-field and edge-of-field conservation for reaching nutrient reduction goals. Here we provide a generic prioritization that can help with spatial targeting and applied it across the conterminous US (CONUS). The prioritization begins with identifying areas with high agricultural nutrient surplus, i.e., where the most nitrogen (N) and/or phosphorus (P) inputs are left on the landscape after crop harvest. Subwatersheds with high surplus included 52% and 50% of CONUS subwatersheds for N and P, respectively, and were located predominantly in the Midwest for N, in the South for P, and in California for both N and P. Then we identified the most suitable conservation strategies using a hierarchy of metrics including nutrient use efficiency (proportion of new nutrient inputs removed by crop harvest), tile drainage, existing buffers for agricultural run-off, and wetland restoration potential. In-field nutrient input reduction emerged as a priority because nutrient use efficiency fell below a high but achievable goal of 0.7 (30% of nutrients applied are not utilized) in 45% and 44% of CONUS subwatersheds for N and P, respectively. In many parts of the southern and western US, in-field conservation (i.e., reducing inputs + preventing nutrients from leaving fields) alone was likely the optimal strategy as agriculture was already well-buffered. However, stacking in-field conservation with additional edge-of-field buffering would be important to conservation strategies in 35% and 29% of CONUS subwatersheds for N and P, respectively. Nutrient use efficiencies were often high enough in the Midwest that proposed strategies focused more on preventing nutrients from leaving fields, managing tile effluent, and buffering agricultural fields. Almost all major river basins would benefit from a variety of nutrient reduction conservation strategies, underscoring the potential of targeted approaches to help limit excess nutrients in surface and ground waters.


Assuntos
Agricultura , Água Subterrânea , Fósforo , Nitrogênio , Nutrientes
14.
Environ Sci Pollut Res Int ; 31(2): 2377-2393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066279

RESUMO

Since reservoirs perform many important functions, they are exposed to various types of unfavorable phenomena, e.g., eutrophication which leads to a rapid growth of algae (blooms) that degrade water quality. One of the solutions to combat phytoplankton blooms are effective microorganisms (EM). The study aims to evaluate the potential of EM in improving the water quality of the Turawa reservoir on the Mala Panew River in Poland. It is one of the first studies providing insights into the effectiveness of using EM in the bioremediation of water in a eutrophic reservoir. Samples for the study were collected in 2019-2021. The analysis showed that EM could be one of the most effective methods for cleaning water from unfavorable microorganisms (HBN22, HBN36, CBN, FCBN, FEN) - after the application of EM, a reduction in their concentration was observed (from 46.44 to 58.38% on average). The duration of their effect ranged from 17.6 to 34.1 days. The application of EM improved the trophic status of the Turawa reservoir, expressed by the Carlson index, by 7.78%. As shown in the literature review, the use of other methods of water purification (e.g., constructed wetlands, floating beds, or intermittent aeration) leads to an increase in the effectiveness and a prolongation of the duration of the EM action. The findings of the study might serve as a guide for the restoration of eutrophic reservoirs by supporting sustainable management of water resources. Nevertheless, further research should be conducted on the effectiveness of EM and their application in the remediation of eutrophic water reservoirs.


Assuntos
Purificação da Água , Qualidade da Água , Eutrofização , Fósforo/análise , Fitoplâncton , Recursos Hídricos
15.
Sci Total Environ ; 913: 169597, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151132

RESUMO

Dredging of lake sediment is a method to remove accumulated phosphorus and nitrogen in lakes and thereby reducing the risk of eutrophication. After dredging, the sediment is dewatered to reduce the volume. It is important to get a high dry matter content and ensure that the filtrate does not contain harmful compounds so it can be returned to the lake. A pilot-scale belt filter and flexible intermediate bulk containers (FIBC) were used for dewatering lake sediment with the sediment treated with a synthetic polymer or three different biopolymers. The goal of the study was to retain the phosphorus in the filter cake while returning the filtrate to the lake with a minimal phosphorus content. Results showed dry matter content of up to 16 % in the dewatered sediment and the sediment retained 96-99 % of the phosphorus. Furthermore, nitrogen was reduced by 27-71 % in the filtrate water. Toxicity tests found low ecotoxicity for most biopolymer filtrates, whereas synthetic polymer showed the highest potential ecotoxicity. Consequently, biopolymers provided satisfactory results, proving more environmentally friendly despite requiring longer filtration time.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Lagos , Monitoramento Ambiental , Projetos Piloto , Fósforo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Biopolímeros , Polímeros , Nitrogênio/análise , Eutrofização
16.
J Environ Manage ; 348: 119163, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827081

RESUMO

Healthy freshwater ecosystems can provide vital ecosystem services (ESs), and this capacity may be hampered due to water quality deterioration and climate change. In the currently available ES modeling tools, ecosystem processes are either absent or oversimplified, hindering the evaluation of impacts of restoration measures on ES provisioning. In this study, we propose an ES modeling tool that integrates lake physics, ecology and service provisioning into a holistic modeling framework. We applied this model to a Dutch quarry lake, to evaluate how nine ESs respond to technological-based (phosphorus (P) reduction) and nature-based measures (wetland restoration). As climate change might be affecting the future effectiveness of restoration efforts, we also studied the climate change impacts on the outcome of restoration measures and provisioning of ESs, using climate scenarios for the Netherlands in 2050. Our results indicate that both phosphorus reduction and wetland restoration mitigated eutrophication symptoms, resulting in increased oxygen concentrations and water transparency, and decreased phytoplankton biomass. Delivery of most ESs was improved, including swimming, P retention, and macrophyte habitat, whereas the ES provisioning that required a more productive system was impaired (sport fishing and bird watching). However, our modeling results suggested hampered effectiveness of restoration measures upon exposure to future climate conditions, which may require intensification of restoration efforts in the future to meet restoration targets. Importantly, ESs provisioning showed non-linear responses to increasing intensity of restoration measures, indicating that effectiveness of restoration measures does not necessarily increase proportionally. In conclusion, the ecosystem service modeling framework proposed in this study, provides a holistic evaluation of lake restoration measures on ecosystem services provisioning, and can contribute to development of climate-robust management strategies.


Assuntos
Ecossistema , Lagos , Mudança Climática , Ecologia , Fósforo/análise
17.
Sci Total Environ ; 905: 167602, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806574

RESUMO

The primary objective of ecological restoration is recovering biodiversity and ecosystem functioning. While a functional trait-based approach can help understand community assembly and ecosystem function recovery during ecological restoration, there still exists a knowledge gap in assessing how functional traits indicate the mediating roles of the plant community in response to forest restoration effects on ecosystem functions. This study applied the "response-effect trait" framework to investigate experimentally whether the treatment of plantation type has an impact on community trait compositions, which in turn could affect forest ecosystem nutrient stocks - here, carbon (C) and nitrogen (N) and phosphorus (P) stocks in tree, understory, litter and soil pools at an experimental station in subtropical China. We used structural equation models (SEMs) to examine the relationships among plantation type, community weighted mean of traits, and nutrient stocks in each pool. Our results show that most of the tree and understory traits studied were response traits to plantation type. Moreover, certain traits played a significant role in mediating plantation-type effects on C, N and P stocks for understory pool (e.g., understory stem specific density and specific leaf area, tree leaf phosphorus content), and for litter and soil pools (e.g., tree leaf carbon or phosphorus content, understory specific leaf area, leaf nitrogen or phosphorus content), known as "response-effect traits". For the tree pool, only effect traits, and no "response-effect" tree traits, were found for the N stock. Total effects of SEMs indicated that, understory or tree traits can have a greater impact than plantation type on understory or litter C, N or P stocks. After approximately 35 years of natural restoration, exotic plantations exhibited a different community trait characteristic from native plantations. The important roles of traits in mediating the effects of plantation type on non-tree pool C, N and P stocks were highlighted.


Assuntos
Ecossistema , Florestas , Árvores/química , Carbono , China , Solo/química , Nitrogênio , Fósforo
18.
Cureus ; 15(9): e45677, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37868528

RESUMO

Pomegranate (Punica granatum L.) has long been used for medical purposes. Punica protopunicas and Punica granatum L. are two prominent species of pomegranate, generally known as "Anar" and farmed worldwide. Its medicinal value is documented in several ancient texts. This review article aims to provide a comprehensive overview of the remedial uses of pomegranate in traditional and modern medicine. The methodology employed for this review involves a systematic literature search, collection of relevant articles, and critical analysis of their content. The review covers the botanical properties, phytochemical composition, and diverse remedial applications of pomegranate, including its antioxidant, anti-inflammatory, anticancer, cardiovascular, antimicrobial, and dermatological properties. The gathered data emphasizes the potential benefits of pomegranate-derived compounds in managing a range of health issues. This review sheds light on the importance of pomegranate as a valuable natural resource for various therapeutic interventions and encourages further research to unlock its full remedial potential. Traditional medicine is gaining popularity to restore health to individuals with few negative effects. Due to the existence of key phytochemical elements such as flavonoids, punic acid, ellagic acid, anthocyanins, ellagitannins, flavones, and estrogenic flavonoids, it has a wide range of clinical applications.

19.
Gen Dent ; 71(6): 24-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889241

RESUMO

The esthetic outcome of temporary prostheses, especially those in the anterior area, is of primary importance. The purpose of this in vitro study was therefore to evaluate the color stability of 3 temporary restorative materials: self-curing (SC) acrylic resin (Tempron); heat-curing acrylic resin (SR Ivocron); and polymethyl methacrylate resin blocks (Telio CAD) machined using computer-aided design/computer-aided manufacturing (CAD/CAM) technology. The heat-curing material was polymerized with either a pressure-curing technique (PT) or a flasking technique (FT). As a result, there were 4 experimental groups: SC, PT, FT, and CAD/CAM. Sixteen specimens were prepared for each group. After polymerization or milling, all specimens were polished using a diamond polishing paste, and 1 specimen from each group was exposed to Fourier-transform infrared (FTIR) and ultraviolet visible (UV-Vis) spectroscopy before immersion. The specimens were exposed to pigmented beverage agents (coffee, cola, turmeric solution, or tea), and the color change was monitored for 4 weeks using FTIR and UV-Vis spectroscopy as well as by macroscopic observation of the specimens (n = 4 per group per immersion period). The PT specimens showed the most significant color change, followed by the SC specimens. A less significant color variation was noted in the FT specimens, and insignificant change was reported in the CAD/CAM group. The solution that had the most significant staining effect was turmeric, and the CAD/CAM resin showed the greatest color stability of the tested materials. Color stability depends on the material used, the polymerization technique, the polishing steps, the pigmentation agent, and the duration of exposure to the agent.


Assuntos
Implantes Dentários , Humanos , Bebidas , Resinas Acrílicas , Café/química , Polimetil Metacrilato , Desenho Assistido por Computador , Teste de Materiais , Propriedades de Superfície , Cor , Materiais Dentários/química
20.
Environ Sci Pollut Res Int ; 30(53): 114556-114568, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861837

RESUMO

Due to the striving for the development of economy and agriculture, anthropogenic activities in many countries dramatically alter natural hydrology. These activities are primarily responsible for river deterioration. Thus, we need to assess the river environment and take measures for remediation. According to the survey data, the study identified the critical factors causing water quality deterioration and evaluated the aquatic biodiversity in the Wanyu River. First, based on the monitoring data of water (dissolved oxygen (DO), chemical oxygen demand (COD), total phosphorus (TP), and ammonia nitrogen (NH3-N)), sediment (copper (Cu), zinc (Zn), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), cadmium (Cd), and chromium (Cr)), and aquatic biodiversity (fish and hydrophyte), the study identified the critical factors causing river quality deterioration. Second, the study provided some recommendations that would consolidate the restoration efforts. Consequently, because of the government's efforts in building the municipal sewage treatment plant, dredging, and other measures, the river environment improved during the 2020-2021 period. The maximum concentrations of COD, NH3-N, and TP in water were reduced by 17.76%, 26.17%, and 20.93%, respectively. The sediment had no risk of heavy metal pollution in the past 2 years. And we could utilize sludge as garden soil or compost resource. However, reducing agricultural pollution, internal nutrient loading, and cost-effective restoration and evaluation represent significant challenges in the efforts to recover the river ecosystem.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Metais Pesados/análise , Mercúrio/análise , Qualidade da Água , China , Fósforo/análise , Medição de Risco , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA