Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398656

RESUMO

Melanoma is the most aggressive and difficult to treat of all skin cancers. Despite advances in the treatment of melanoma, the prognosis for melanoma patients remains poor, and the recurrence rate remains high. There is substantial evidence that Chinese herbals effectively prevent and treat melanoma. The bioactive ingredient Salvianolic acid B (SAB) found in Salvia miltiorrhiza, a well-known Chinese herbal with various biological functions, exhibits inhibitory activity against various cancers. A375 and mouse B16 cell lines were used to evaluate the main targets and mechanisms of SAB in inhibiting melanoma migration. Online bioinformatics analysis, Western blotting, immunofluorescence, molecular fishing, dot blot, and molecular docking assays were carried out to clarify the potential molecular mechanism. We found that SAB prevents the migration and invasion of melanoma cells by inhibiting the epithelial-mesenchymal transition (EMT) process of melanoma cells. As well as interacting directly with the N-terminal domain of ß-actin, SAB enhanced its compactness and stability, thereby inhibiting the migration of cells. Taken together, SAB could significantly suppress the migration of melanoma cells via direct binding with ß-actin, suggesting that SAB could be a helpful supplement that may enhance chemotherapeutic outcomes and benefit melanoma patients.


Assuntos
Actinas , Benzofuranos , Melanoma , Animais , Camundongos , Humanos , Actinas/genética , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Depsídeos
2.
J Ethnopharmacol ; 327: 117939, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382651

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii polyglycosides (TWP) tablet is the most widely used traditional Chinese medicine preparation for the treatment of rheumatoid arthritis (RA), but the hepatotoxicity often limits its widespread application. In traditional use, Salvia miltiorrhiza has cardioprotective and hepatoprotective effects. Salvianolic acid extract (SA) is a hydrophilic component of Salvia miltiorrhiza and has significant antioxidant and hepatoprotective effects. AIM OF THE STUDY: To investigate the protective effects of SA on the TWP-induced acute liver injury in rats and to explore the related mechanisms by integration of metabolomics and transcriptomics. MATERIALS AND METHODS: SA and TWP extracts were identified by UPLC-Q/TOF-MS. SA (200 mg/kg) was administered for consecutive 7 days. On day 7, TWP (360 mg/kg) was administered by gavage to induce the acute liver injury in rats. Serum biochemical assay and H&E staining were used to evaluate liver damage. Liver metabolomics and transcriptomics were used to explore the potential mechanisms, and further molecular biological experiments such as qPCR and IHC were utilized to validate the relevant signaling pathways. RESULTS: SA can prevent liver injury symptoms caused by TWP, such as elevated liver index, elevated ALT and AST, and pathological changes in liver tissue. Liver metabolomics studies showed that TWP can significantly alter the content of individual bile acid in the liver and SA had the most significant impact on the biosynthetic pathway of bile acids. The transcriptomics results of the liver indicated that the genes changed in the SA + TWP group were mainly involved in sterol metabolism, lipid regulation and bile acid homeostasis pathways. The gene expression of Nr1h4, which encodes farnesoid X receptor (FXR), an important regulator of bile acid homeostasis, was significantly changed. Further studies confirmed that SA can prevent the downregulation of FXR and its downstream signaling induced by TWP, thereby regulating bile acid metabolism, ultimately preventing acute liver injury caused by TWP. CONCLUSION: Our results demonstrated that SA could protect the liver from TWP-induced hepatic injury by modulation of the bile acid metabolic pathway. SA may provide a new strategy for the protection against TWP-induced acute liver injury.


Assuntos
Alcenos , Polifenóis , Salvia miltiorrhiza , Tripterygium , Ratos , Animais , Fígado , Ácidos e Sais Biliares , Salvia miltiorrhiza/química , Metabolismo dos Lipídeos
3.
Biomed Pharmacother ; 171: 116168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232662

RESUMO

In patients with diabetic wounds, wound healing is impaired due to the presence of persistent oxidative stress, an altered inflammatory response, and impaired angiogenesis and epithelization. Salvianolic acid B (SAB), which is derived from the Chinese medicinal plant Salvia miltiorrhiza, has been found to exhibit antioxidant, anti-inflammatory, and proangiogenic effects. Previous studies have used 3D bioprinting technology incorporating sodium alginate (SA) and gelatin (Gel) as basic biomaterials to successfully produce artificial skin. In the current study, 3D bioprinting technology was used to incorporate SAB into SA-Gel to form a novel SAB-SA-Gel composite porous scaffold. The morphological characteristics, physicochemical characteristics, biocompatibility, and SAB release profile of the SAB-SA-Gel scaffolds were evaluated in vitro. In addition, the antioxidant, anti-inflammatory, and proangiogenic abilities of the SAB-SA-Gel scaffolds were evaluated in cells and in a rat model. Analysis demonstrated that 1.0 wt% (the percentage of SAB in the total weight of the solution containing SA and Gel) SAB-SA-Gel scaffolds had strong antioxidant, anti-inflammatory, and proangiogenic properties both in cells and in the rat model. The 1.0% SAB-SA-Gel scaffold reduced the expression of tumor necrosis factor-α, interleukin-6, and interluekin-1ß and increased the expression of transforming growth factor-ß. In addition, this scaffold removed excessive reactive oxygen species by increasing the expression of superoxide dismutase, thereby protecting fibroblasts from injury. The scaffold increased the expression of vascular endothelial growth factor and platelet/endothelial cell adhesion molecule-1, accelerated granulation tissue regeneration and collagen deposition, and promoted wound healing. These findings suggest that this innovative scaffold may have promise as a simple and efficient approach to managing diabetic wound repair.


Assuntos
Benzofuranos , Bioimpressão , Depsídeos , Diabetes Mellitus , Humanos , Ratos , Animais , Gelatina/farmacologia , Antioxidantes/farmacologia , Alginatos/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização , Anti-Inflamatórios/farmacologia
4.
Phytomedicine ; 124: 155326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185068

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is a phenomenon that pathological injury of ischemic brain tissue is further aggravated after the restoration of blood supply. The complex pathological mechanism of CIRI has led to the failure of multiple neuroprotective agents in clinical studies. Salvianolic acid A (SAA) is a neuroprotective extract from Salvia miltiorrhiza Bge., with significant pharmacological activities in the treatment of brain injury. However, the neuroprotective mechanisms of SAA remain unclear. PURPOSE: To explore the potential protective effect of SAA on CIRI and its mechanism, and to provide experimental basis for the research of new drugs for CIRI. STUDY DESIGN: A model of transient middle cerebral artery occlusion (tMCAO) in rats was used to simulate clinical CIRI, and the neuroprotective effect of SAA on tMCAO rats was investigated within 14 days after reperfusion. The improvement effects of SAA on cognitive impairment of tMCAO rats were investigated by behavioral tests from days 7-14. Finally, the neuroprotective mechanism of SAA was investigated on day 14. METHODS: The neuroprotective effects and mechanism of SAA were investigated by behavioral tests, HE and TUNEL staining, RNA sequence (RNA-seq) analysis and Western blot in tMCAO rats. RESULTS: The brain protective effects of SAA were achieved by alleviating cerebral infarction, cerebral edema, cerebral atrophy and nerve injury in tMCAO rats. Meanwhile, SAA could effectively improve the cognitive impairment and pathological damage of hippocampal tissue, and inhibit cell apoptosis in tMCAO rats. Besides, SAA could provide neuroprotective effects by up-regulating the expression of Bcl-2, inhibiting the activation of Caspase 3, and regulating PKA/CREB/c-Fos signaling pathway. CONCLUSION: SAA can significantly improve brain injury and cognitive impairment in CIRI rats, and this neuroprotective effect may be achieved through the anti-apoptotic effect and the regulation of PKA/CREB/c-Fos signaling pathway.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Lactatos , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/patologia , Traumatismo por Reperfusão/metabolismo , Apoptose , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Lesões Encefálicas/tratamento farmacológico
5.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38226779

RESUMO

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Assuntos
Sistema Enzimático do Citocromo P-450 , Salvia miltiorrhiza , Hidroxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/enzimologia , Polifenóis/metabolismo , Polifenóis/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Alcenos
6.
Phytother Res ; 38(2): 620-635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953063

RESUMO

Idiopathic pulmonary fibrosis (IPF), as the most common idiopathic interstitial pneumonia, is caused by a complex interaction of pathological mechanisms. Interestingly, IPF frequently occurs in the middle-aged and elderly populations but rarely affects young people. Salvianolic acid B (SAB) exerts antioxidant, antiinflammatory, and antifibrotic bioactivities and is considered a promising drug for pulmonary disease treatment. However, the pharmacological effects and mechanisms of SAB on cellular senescence of lung cells and IPF development remain unclear. We used bleomycin (BLM)-induced pulmonary fibrosis mice and different lung cells to investigate the antisenescence impact of SAB and explain its underlying mechanism by network pharmacology and the Human Protein Atlas database. Here, we found that SAB significantly prevented pulmonary fibrosis and cellular senescence in mice, and reversed the senescence trend and typical senescence-associated secretory phenotype (SASP) factors released from lung macrophages and alveolar type II (AT2) epithelial cells, which further reduced lung fibroblasts activation. Additionally, SAB alleviated the epithelial-mesenchymal transition process of AT2 cells induced by transforming growth factor beta. By predicting potential targets of SAB that were then confirmed by chromatin immunoprecipitation-qPCR technology, we determined that SAB directly hampered the binding of transcription factor stimulating protein 1 to the promoters of SASPs (P21 and P16), thus halting lung cell senescence. We demonstrated that SAB reduced BLM-induced AT2 and macrophage senescence, and the subsequent release of SASP factors that activated lung fibroblasts, thereby dual-relieving IPF. This study provides a new scientific foundation and perspective for pulmonary fibrosis therapy.


Assuntos
Benzofuranos , Depsídeos , Fibrose Pulmonar Idiopática , Pulmão , Pessoa de Meia-Idade , Idoso , Humanos , Camundongos , Animais , Adolescente , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Senescência Celular/fisiologia , Macrófagos Alveolares , Bleomicina/efeitos adversos
7.
J Ethnopharmacol ; 319(Pt 3): 117356, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890803

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY: To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS: Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS: Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION: Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Nefrite , Animais , Ratos , NF-kappa B , Nefropatias Diabéticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Glucose , Inflamação
8.
Biomed Pharmacother ; 170: 116039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157643

RESUMO

Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Nefropatias , Humanos , Medicina Tradicional Chinesa , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Nefropatias/tratamento farmacológico , Fibrose , Sistemas de Liberação de Medicamentos
9.
Chin Med ; 18(1): 161, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072948

RESUMO

BACKGROUND: Salvianolic acid B (Sal B), a water-soluble phenolic compound derived from Salvia miltiorrhiza Bunge, is commonly used in Traditional Chinese Medicine to treat cardiovascular disease. In our previous study, Sal B protected against myocardial fibrosis induced by diabetic cardiomyopathy (DCM). This study aimed to investigate the ameliorative effects and potential mechanisms of Sal B in mitigating myocardial fibrosis induced by DCM. METHODS: Various methods were used to investigate the effects of Sal B on myocardial fibrosis induced by DCM in vivo and in vitro. These methods included blood glucose measurement, echocardiography, HE staining, Masson's trichrome staining, Sirius red staining, cell proliferation assessment, determination of hydroxyproline levels, immunohistochemical staining, evaluation of fibrosis-related protein expression (Collagen-I, Collagen-III, TGF-ß1, p-Smad3, Smad3, Smad7, and α-smooth muscle actin), analysis of Smad7 gene expression, and analysis of Smad7 ubiquitin modification. RESULTS: The animal test results indicated that Sal B significantly improved cardiac function, inhibited collagen deposition and phenotypic transformation, and ameliorated myocardial fibrosis in DCM by upregulating Smad7, thereby inhibiting the TGF-ß1 signaling pathway. In addition, cell experiments demonstrated that Sal B significantly inhibited the proliferation, migration, phenotypic transformation, and collagen secretion of cardiac fibroblasts (CFs) induced by high glucose (HG). Sal B significantly decreased the ubiquitination of Smad7 and stabilized the protein expression of Smad7, thereby increasing the protein expression of Smad7 in CFs and inhibiting the TGF-ß1 signaling pathway, which may be the potential mechanism by which Sal B mitigates myocardial fibrosis induced by DCM. CONCLUSION: This study revealed that Sal B can improve myocardial fibrosis in DCM by deubiquitinating Smad7, stabilizing the protein expression of Smad7, and blocking the TGF-ß1 signaling pathway.

10.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836602

RESUMO

This study evaluates the antioxidant properties and anti-inflammatory potential of polyphenolic acid-rich fractions of 80% methanolic extract from the hairy roots of Dracocephalum moldavica. The fractionation of the crude extract yielded the following: a diethyl ether fraction rich in caffeic acid (DM1) (25.85 mg/g DWE), an n-butyl fraction rich in rosmarinic acid (DM3) (43.94 mg/g DWE) and a water residue rich in salvianolic acid B (DM4) (51.46 mg/g DWE). The content of these compounds was determined using high-performance liquid chromatography (HPLC). Their antioxidant activity was evaluated based on DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) and FRAP assays. The anti-inflammatory activity of the fractions was determined by their effect on nuclear factor kappa-B (NF-κB) activation and interleukin-1ß (IL-1ß) production in LPS E. coli stimulated monocytes. The level of pro-inflammatory IL-1ß in cells was measured using ELISA. The activation of NF-κB in THP1-Blue™ cells, resulting in the secretion of SEAP (secreted embryonic alkaline phosphatase), was detected spectrophotometrically using Quanti-Blue reagent. Among the tested fractions, the diethyl ether fraction (DM1) showed the highest antioxidant potential, with an EC50 value of 15.41 µg/mL in the DPPH assay and 11.47 µg/mL in ABTS and a reduction potential of 10.9 mM Fe(II)/g DWE in FRAP. DM1 at a concentration of 10 mg/mL also efficiently reduced LPS-induced SEAP secretion (53% inhibition) and IL-1ß production (47% inhibition) without affecting the normal growth of L929 fibroblast cells.


Assuntos
Antioxidantes , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , NF-kappa B , Éter , Lipopolissacarídeos/farmacologia , Escherichia coli , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
11.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820854

RESUMO

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Assuntos
Nefropatias , Humanos , Acetilação , Nefropatias/tratamento farmacológico , Rim , Epigênese Genética , Epigenômica
12.
ACS Appl Mater Interfaces ; 15(39): 45606-45615, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733024

RESUMO

Supramolecular natural product gels (NPGs) have emerged as promising biomaterials for scalable and adjustable drug delivery systems. These gels possess biocompatibility, biodegradability, and the ability to mimic the extracellular matrix. Salvianolic acid B (SAB), derived from Salvia miltiorrhiza, a Chinese medicinal plant, exhibits various beneficial properties such as antioxidant, antifibrotic, and angiogenic effects. In our research, we serendipitously discovered that the co-assembly of SAB and a soluble phosphopeptide results in the formation of a robust and adhesive hydrogel termed 1&SAB hydrogel. This hydrogel effectively prolongs the retention time of the therapeutic agents on the skin's wound surface, thereby promoting wound healing. The hydrogel demonstrates antioxidant effects, enhances cell migration, accelerates angiogenesis, and inhibits scar hyperplasia. This innovative gel material offers a simple and efficient approach to managing skin wounds and holds promise for application in complex wound-healing treatments.


Assuntos
Benzofuranos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Fosfopeptídeos , Cicatrização , Benzofuranos/farmacologia , Antioxidantes/farmacologia
13.
Pharmaceutics ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765204

RESUMO

Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.

14.
Am J Chin Med ; 51(7): 1675-1709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646140

RESUMO

Salvia miltiorrhiza Bunge, called Danshen in Chinese, is the dried root and rhizome of S. miltiorrhiza, which is part of the mint family, Lamiaceae; it has chiefly been used to treat blood stasis and improve blood flow in cerebrovascular and cardiovascular diseases for over 2000 years. Recent preclinical studies have indicated that S. miltiorrhiza has a wide range of pharmacological properties making it useful for the treatment of diverse liver diseases. S. miltiorrhiza protects the liver from harmful hepatotoxins, reduces hepatic oxidative stress, ameliorates steatosis, and alleviates hepatic inflammation, fibrosis, and cancer. Moreover, several key mechanisms, including apoptosis, AMP-activated protein kinase, mitogen-activated protein kinase, and nuclear factor kappa B, may be involved in the benefits of S. miltiorrhiza in hepatic disorders. In particular, salvianolic acid B and cryptotanshinone, both compounds derived from S. miltiorrhiza, possess therapeutic activities similar to those of S. miltiorrhiza, and thus may play a crucial role in the therapeutic activity of S. miltiorrhiza in liver diseases. Because reports on the pharmacological effects of this herb are scattered, this review aimed to consolidate the available literature to allow the re-evaluation and identification of gaps to guide future research. This review focuses on the role of S. miltiorrhiza in improving the molecular pathology of liver diseases, as reported in in vitro and in vivo studies.

15.
Phytomedicine ; 119: 155002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572566

RESUMO

BACKGROUND: Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS: In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1ß were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS: The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES: we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS: This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , LDL-Colesterol , Transdução de Sinais , Inflamação/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico
16.
Acta Pharmacol Sin ; 44(11): 2151-2168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37420104

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 µM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aß generation by inhibiting the ß-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aß plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aß generation in early AD, which is a potential therapeutic intervention for early AD treatment.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Camundongos Transgênicos , Retina/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
17.
Int Immunopharmacol ; 122: 110550, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451016

RESUMO

Liver fibrosis is a reversible pathological process and a wound healing response to liver injury. As an early stage of various liver diseases, liver fibrosis can develop into cirrhosis, liver failure, and even liver cancer if not controlled in time. Salvia miltiorrhiza is a medicinal plant with hepatoprotective effects. Salvianolic acid B (Sal B) is the representative component of S. miltiorrhiza. Many studies have reported the anti-liver fibrosis effects and mechanisms of Sal B. However, the direct anti-fibrotic targets of Sal B have not yet been reported. Platelet-derived growth factor receptor ß (PDGFRß) is one of the most classical targets in liver fibrosis, which is closely related to hepatic stellate cells (HSCs) activated. Previously, we established and applied a PDGFRß affinity chromatography model, and found that Sal B binds well to PDGFRß. Therefore, this study aimed to investigate the direct targets of Sal B against liver fibrosis. We confirmed the binding ability of Sal B to PDGFRß by molecular docking and a surface plasmon resonance biosensor. Our findings indicated that Sal B targeted PDGFRß to inhibit the activation, migration and proliferation of HSCs and suppressed the PDGF-BB-induced PDGFRß signaling pathway. Annexin V-FITC/PI assay showed that Sal B reversed the PDGF-BB-induced decrease in HSC apoptosis rate. In the mouse liver fibrosis model, Sal B inhibited the PDGFRß signaling pathway, HSC activation and reduced inflammatory response, ultimately improved CCl4-induced liver fibrosis. In summary, the direct anti-fibrotic targets of Sal B may be PDGFRß, and this study clarified the anti-liver fibrosis effects and mechanism of Sal B.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Animais , Becaplermina/farmacologia , Simulação de Acoplamento Molecular , Cirrose Hepática/metabolismo , Fibrose
18.
Phytother Res ; 37(10): 4540-4556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337901

RESUMO

Myofibroblasts activation intensively contributes to cardiac fibrosis with undefined mechanism. Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency. This study aimed to interrogate the inhibitory effects and underlying mechanism of SAA on myofibroblasts activation and cardiac fibrosis. Antifibrotic effects of SAA were evaluated in mouse myocardial infarction (MI) model and in vitro myofibroblasts activation model. Metabolic regulatory effects and mechanism of SAA were determined using bioenergetic analysis and cross-validated by multiple metabolic inhibitors and siRNA or plasmid targeting Ldha. Finally, Akt/GSK-3ß-related upstream regulatory mechanisms were investigated by immunoblot, q-PCR, and cross-validated by specific inhibitors. SAA inhibited cardiac fibroblasts-to-myofibroblasts transition, suppressed collage matrix proteins expression, and effectively attenuated MI-induced collagen deposition and cardiac fibrosis. SAA attenuated myofibroblasts activation and cardiac fibrosis by inhibiting LDHA-driven abnormal aerobic glycolysis. Mechanistically, SAA inhibited Akt/GSK-3ß axis and downregulated HIF-1α expression by promoting its degradation via a noncanonical route, and therefore restrained HIF-1α-triggered Ldha gene expression. SAA is an effective component for treating cardiac fibrosis by diminishing LDHA-driven glycolysis during myofibroblasts activation. Targeting metabolism of myofibroblasts might occupy a potential therapeutic strategy for cardiac fibrosis.


Assuntos
Infarto do Miocárdio , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Miofibroblastos , Transdução de Sinais , Fibrose , Modelos Animais de Doenças , Glicólise
19.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37331452

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Salvia miltiorrhiza , Animais , Camundongos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Peixe-Zebra , Receptor Nicotínico de Acetilcolina alfa7 , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células RAW 264.7
20.
Front Pharmacol ; 14: 1146309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124221

RESUMO

Background: Salvianolic acid B (Sal B) is one of the main active ingredients of Salvia miltiorrhiza Bunge. In China, many traditional Chinese medicines have been modified into injections for higher bioavailability and better efficacy. Salvianolic acid injection has been widely used in the clinic. Objective: This phase 1, randomized, double-blind, placebo-controlled, single-center study aimed to evaluate the safety, tolerance, and pharmacokinetics of Sal B injection in healthy Chinese volunteers. Methods: For the single-ascending-dose study, forty-seven healthy volunteers were randomly divided into 25, 75, 150, 200, 250, and 300 mg groups. For the multiple-ascending-dose study, sixteen healthy volunteers were randomly divided into 150 and 300 mg groups. In each group, volunteers were treated with Sal B or placebo randomly. Their safety was evaluated by a skin test, physical examination, vital sign, laboratory examination, 12-lead electrocardiogram, Holter, and clinical symptoms and signs. Blood samples were collected in 75, 150, and 300 mg single-ascending-dose study groups and 150 mg multiple-ascending-dose study groups to determine the concentration of salvianolic acid B. Results: In single-ascending-dose study groups, there were 41 adverse events in 24 cases (51.1%, 24/47). In multiple-ascending-dose study groups, there were 13 adverse events in eight cases (50.0%, 8/16). Sixty-six volunteers received the skin test, and three of them were excluded because of the positive result. Adverse events related to the treatment included increased alanine aminotransferase (4.0%), increased bilirubin (2.0%), increased creatinine kinase-MB (2.0%), increased brain natriuretic peptide (8.0%), increased urine N-acetyl-ß-D-glucosidase (4.0%), dizziness (2.0%), and chest discomfort (2.0%). No serious adverse events occurred. No volunteers withdrew from the trial. Peak plasma concentration and the area under the plasma concentration-time curve of salvianolic acid B progressively increased in a dose-dependent manner in 75, 150, and 300 mg single-ascending-dose study groups. There was no accumulation after 5 consecutive days of administration of 150 mg salvianolic acid B. Conclusion: Salvianolic acid B injections administered up to 300 mg in a single dose and 250 mg for 5 consecutive days showed excellent safety and tolerability in healthy Chinese volunteers. Clinical Trial Registration: www.chinadrugtrials.org.cn, identifier CTR20192236.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA