Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 301: 134762, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490751

RESUMO

Aiming at the problems of lack of carbon sources for nitrogen removal and low phosphorus removal efficiency of constructed wetlands (CWs) in treating wastewater treatment plant (WWTP) effluent, an electrolysis assisted constructed wetland (E-CW) with coconut fiber as substrate and solid carbon sources was constructed. The synthetic secondary effluent was used as the influent of the E-CW with a wastewater treatment capacity of 140 L d-1. The total nitrogen (TN) and the total phosphorus (TP) removal efficiency of the E-CW with coconut fiber treating WWTP effluent were 69.4% and 93.3%, respectively, which were 54.3% and 88.2% higher than those of CW with coconut fiber and no electrolysis. The removal efficiency of TN was 39.9% higher than that of E-CW with gravel. The current intensity had significant effect on nitrogen removal efficiency and the release of carbon sources from coconut fiber. When current intensity increased from 0.25 A to 1.00 A, the TN removal efficiency and nitrate removal rate increased by 21.1% and 0.21 mg L-1 h-1, respectively, and the volatile fatty acids (VFAs) released from coconut fiber increased by 57.7 mg L-1. The 16S rRNA high-throughput sequencing results indicated that the main functional nitrogen-removing microbes were Hydrogenophaga, Thauera, Rhodanobacteraceae_norank, Xanthobacteraceae_norank, etc. Multiple paths including autotrophic denitrification with hydrogen and Fe2+ as electron donors and heterotrophic denitrification were achieved in the system. Meanwhile, the main functional lignocellulose degradation microbes were enriched in the system, including Cytophaga_xylanolytica_group, and Caldilineaceae. Because electrolysis created a favorable environment for them to release carbon sources from coconut fiber. This study provided a new perspective for advanced nutrients removal of WWTP effluent in CWs.


Assuntos
Desnitrificação , Áreas Alagadas , Carbono , Cocos , Eletrólise , Nitrogênio , Fósforo , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
2.
PeerJ ; 10: e13339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505679

RESUMO

Nitrogen pollution in aquaculture wastewater can pose a significant health and environmental risk if not removed before wastewater is discharged. Biological denitrification uses external carbon sources to remove nitrogen from wastewater; however, these carbon sources are often expensive and require significant energy. In this study, we investigated how six types of agricultural waste can be used as solid carbon sources in biological denitrification. Banana stalk (BS), loofah sponge (LS), sorghum stalk (SS), sweet potato stalk (SPS), watermelon skins (WS) and wheat husk (WH) were studied to determine their capacity to release carbon and improve denitrification efficiency. The results of batch experiments showed that all six agricultural wastes had excellent carbon release capacities, with cumulative chemical oxygen demands of 37.74-535.68 mg/g. During the 168-h reaction, the carbon release process followed the second-order kinetic equation and Ritger-Peppas equation, while carbon release occurred via diffusion. The kinetic equation fitting, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that LS had the lowest cm and the maximum t1/2 values and only suffered a moderate degree of hydrolysis. It also had the lowest pollutant release rate and cumulative chemical oxygen demand, as well as the most efficient removal of total phosphorous (TP) and total nitrogen (TN). Therefore, we concluded that LS has the lowest potential risk of excess carbon release and capacity for long-lasting and stable carbon release. The WS leachate had the highest TN contents, while the SPS leachate had the highest TP content. In the 181-h denitrification reaction, all six agricultural wastes completely removed nitrate and nitrite; however, SS had the highest denitrification rate, followed by LS, WH, BS, SPS, and WS (2.16, 1.35, 1.35, 1.34, 1.34, and 1.01 mg/(L·h), respectively). The denitrification process followed a zero-order and first-order kinetic equation. These results provide theoretical guidance for effectively selecting agricultural waste as a solid carbon source and improving the denitrification efficiency of aquaculture wastewater treatment.


Assuntos
Musa , Águas Residuárias , Desnitrificação , Reatores Biológicos , Aquicultura , Carbono/química , Nitrogênio/química , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA