Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632095

RESUMO

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Assuntos
Glycine max , Infertilidade Masculina , Masculino , Humanos , Plantas , Pólen/genética , Fertilidade , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1485-1493, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621932

RESUMO

Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.


Assuntos
Ligusticum , Reprodução , Pólen , Flores , Polissacarídeos
3.
Planta ; 259(3): 64, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329576

RESUMO

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Assuntos
Aegilops , Infertilidade , Oxilipinas , Ciclopentanos , Citoplasma/genética , Genes myb , Pólen/genética , Triticum
4.
Gene ; 893: 147936, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38381507

RESUMO

Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Arabidopsis/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Pólen/genética
5.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256191

RESUMO

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Assuntos
Beta vulgaris , Metilação de DNA , Sulfitos , Beta vulgaris/genética , Infertilidade das Plantas/genética , Verduras , Açúcares
6.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792967

RESUMO

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Assuntos
Arabidopsis , Infertilidade , Zea mays/genética , Zea mays/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Simulação de Acoplamento Molecular , Pironas/metabolismo , Melhoramento Vegetal , Arabidopsis/genética , Lipídeos , Pólen/genética , Pólen/metabolismo , Infertilidade/genética , Infertilidade/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Artigo em Chinês | WPRIM | ID: wpr-1030199

RESUMO

[Objective]To summarize Professor LIU Yanxia's academic experience in clinical application of Chinese medicine application therapy in the treatment of various gynecological diseases.[Methods]To review and analyze Professor LIU's clinical experience in the treatment of gynecological refractory diseases by using Chinese medicine patch for lower abdomen and vulva application,and systematically summarize Professor LIU's clinical experience from the aspects of etiology,pathogenesis,treatment principles,methods and empirical prescriptions.A medical case of female vulvar lichen sclerosus was attached for further evidence and explanation.[Results]Professor LIU bases on the circulation characteristics of the lower abdominal meridians,and in accordance with the characteristics of etiology and pathogenesis,forms an empirical formula for applying Chinese medicine patch to the lower abdomen,represented by"warming the kidney and warming the uterus""removing stasis and relieving pain""strengthening the spleen and removing dampness""strengthening the body and preventing infection",which has been respectively used to treat infertility,gynecological pain,obesity and sub health conditions.At the same time,Professor LIU divides vulvar lichen sclerosus lesions into proliferative and atrophic types based on the different characteristics,and uses different empirical formulas for vulvar plaster therapy.The case of atrophic vulvar lichen sclerosus was characterized by liver and kidney deficiency syndrome.The overall treatment principle was to tonify the kidney,nourish blood,and eliminate blood stasis and relieve itching,and modified Erxian Decoction and Danggui Buxue Decoction was used,combined with Chinese medicine application therapy for removing stasis and relieving itching at the local area of the vulvar lesion,which resulted in a significant therapeutic effect.[Conclusion]Professor LIU Yanxia has developed an empirical prescription for applying Chinese medicine patch to different diseases based on the different etiology,pathogenesis and characteristics of the disease.The medication features are distinctive,and treatment effect is satisfactory,which can provide reference for clinical practice.

8.
Plant Biotechnol J ; 21(11): 2322-2332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37475199

RESUMO

A complete and genetically stable male sterile line with high outcrossing rate is a prerequisite for the development of commercial hybrid soybean. It was reported in the last century that the soybean male sterile ms2 mutant has the highest record with seed set. Here we report the cloning and characterization of the MS2 gene in soybean, which encodes a protein that is specifically expressed in the anther. MS2 functions in the tapetum and microspore by directly regulating genes involved in the biosynthesis of secondary metabolites and the lipid metabolism, which is essential for the formation of microspore cell wall. Through comparison of the field performance with the widely used male sterile mutants in the same genetic background, we demonstrated that the ms2 mutant conducts the best in outcrossing rate and makes it an ideal tool in building a cost-effective hybrid system for soybean.


Assuntos
Glycine max , Infertilidade das Plantas , Glycine max/genética , Glycine max/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Melhoramento Vegetal , Fertilidade/genética , Regulação da Expressão Gênica de Plantas
9.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501369

RESUMO

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação
10.
J Integr Plant Biol ; 65(8): 2001-2017, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014030

RESUMO

In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infertilidade , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Celulose/metabolismo , Infertilidade/metabolismo
12.
Biochem Genet ; 61(5): 2116-2134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36947296

RESUMO

Flower organ development is one of the most important processes in plant life. However, onion CMS (cytoplasmic male sterility) shows an abnormal development of floral organs. The regulation of MADS-box transcription factors is important for flower development. To further understand the role of MADS-box transcription factors in the regulation of cytoplasmic male sterility onions. We cloned the full-length cDNA of five MADS-box transcription factors from the flowers of onion using RACE (rapid amplification of cDNA ends) technology. We used bioinformatics methods for sequence analysis and phylogenetic analysis. Real-time quantitative PCR was used to detect the expression patterns of these genes in different onion organs. The relative expression levels of five flower development genes were compared in CMS onions and wild onions. The results showed that the full-length cDNA sequences of the cloned MADS-box genes AcFUL, AcDEF, AcPI, AcAG, and AcSEP3 belonged to A, B, C, and E MADS-box genes, respectively. A phylogenetic tree construction analysis was performed on its sequence. Analysis of MADS-box gene expression in wild onion and CMS onion showed that the formation of CMS onion was caused by down-regulation of AcDEF, AcPI, and AcAG gene expression, up-regulation of AcSEP3 gene expression, and no correlation with AcFUL gene expression. This work laid the foundation for further study of the molecular mechanism of onion flower development and the molecular mechanism of CMS onion male sterility.


Assuntos
Proteínas de Domínio MADS , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , DNA Complementar/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Flores/genética , Flores/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675118

RESUMO

High-resolution melting (HRM) analysis is a powerful detection method for fast, high-throughput post-PCR analysis. A two-step HRM marker system was developed for identification of the N-, S-, R- and T-cytoplasms of onion. In the first step for the identification of N-, S- and R-cytoplasms, one forward primer was designed to the identical sequences of both cox1 and orf725 genes, and two reverse primers specific to the polymorphic sequences of cox1 and orf725 genes were used. For the second step, breeding lines with N-cytoplasm were evaluated with primers developed from the orfA501 sequence to distinguish between N- and T-cytoplasms. An amplicon with primers to the mitocondrial atp9 gene was used as an internal control. The two-step HRM marker system was tested using 246 onion plants. HRM analysis showed that the most common source of CMS, often used by Russian breeders, was S-cytoplasm; the rarest type of CMS was R-cytoplasm; and the proportion of T-cytoplasm among the analyzed breeding lines was 20.5%. The identification of the cytoplasm of a single plant by phenotype takes from 4 to 8 years. The HRM-based system enables quick and easy distinguishing of the four types of onion cytoplasm.


Assuntos
Cebolas , Melhoramento Vegetal , Cebolas/genética , Reação em Cadeia da Polimerase , Citoplasma/genética , Genes de Plantas
14.
World J Mens Health ; 41(3): 640-648, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593707

RESUMO

PURPOSE: No consensus exists about the causal relationship between vitamin D (VD) and male factor infertility due to heterogeneity and confounding factors even in randomized controlled trials (RCTs). This study aimed to investigate the causal association between 25 hydroxyvitamin D (25OHD) levels and male factor infertility through Mendelian randomization (MR) and provide complementary information for optimization of future RCTs. MATERIALS AND METHODS: Two-sample MR analyses with four steps were performed. Single-nucleotide polymorphisms (SNPs) for VD were extracted from 417,580 Europeans in the UK Biobank, and the summary-level data of male factor infertility (825 cases and 85,722 controls) were extracted from the FinnGen. RESULTS: Totally 99 SNPs robustly associated with the 25OHD were included, and a 1-unit increase in genetically predicted natural-log transformed 25OHD levels was associated with decreased risk of male factor infertility (odds ratio [OR], 0.62; 95% confidence interval [CI], 0.44-0.89; p=0.010), which was consistent in all three sensitivity analyses (MR-Egger, weighted median, and weighted mode methods). The conclusion still stands after removing SNPs which explained more variation in the male factor infertility than the 25OHD (OR, 0.61; 95% CI, 0.42-0.88; p=0.009; n=62), and which were associated with confounders (body mass index, type 2 diabetes, smoking, and coronary artery diseases) of male factor infertility (OR, 0.58; 95% CI, 0.39-0.85; p=0.005; n=55). CONCLUSIONS: VD supplement to increase serum 25OHD levels may be clinically beneficial for male factor infertility in the general population. The well-designed RCTs should be performed in priority to address this question.

15.
Plant Sci ; 329: 111596, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657664

RESUMO

Formation of the pollen wall, which is mainly composed of lipid substances secreted by tapetal cells, is important to ensure pollen development in rice. Although several regulatory factors related to lipid biosynthesis during pollen wall formation have been identified in rice, the molecular mechanisms controlling lipid biosynthesis are unclear. In this study, we isolated the male-sterile rice mutant oslddt1 (leaked and delayed degraded tapetum 1). oslddt1 plants show complete pollen abortion resulting from delayed degradation of the tapetum and blocked formation of Ubisch bodies and pollen walls. OsLDDT1 (LOC_Os03g02170) encodes a DUF726 containing protein of unknown function with highly conserved transmembrane and α/ß Hydrolase domains. OsLDDT1 localizes to the endoplasmic reticulum and the gene is highly expressed in rice panicles. Genes involved in regulating fatty acid synthesis and formation of sporopollenin and pollen exine during anther development showed significantly different expression patterns in oslddt1 plants. Interestingly, the wax and cutin contents in mature oslddt1-1 anthers were decreased by 74.07 % and 72.22 % compared to WT, indicating that OsLDDT1 is involved in fatty acid synthesis and affects formation of the anther epidermis. Our results provide as deeper understanding of the role of OsLDDT1 in regulating male sterility and also provide materials for hybrid rice breeding.


Assuntos
Oryza , Oryza/genética , Proteínas de Plantas/metabolismo , Mutação , Melhoramento Vegetal , Proteínas de Membrana/metabolismo , Pólen/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética
16.
J Adv Res ; 49: 15-30, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36130683

RESUMO

INTRODUCTION: ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES: Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS: Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS: Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION: ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Zea mays , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solubilidade , Pólen/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipídeos
17.
Plant Biol (Stuttg) ; 25(2): 233-245, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36350096

RESUMO

The tapetum is the innermost layer of the four layers of the rice anther that provides protection and essential nutrients to pollen grain development and delivers precursors for pollen exine formation. The tapetum has a key role in the normal development of pollen grains and tapetal programmed cell death (PCD) that is linked with sporopollenin biosynthesis and transport. Recently, many genes have been identified that are involved in tapetum formation in rice and Arabidopsis. Genetic mutation in PCD-associated genes could affect normal tapetal PCD, which finally leads to aborted pollen grains and male sterility in rice. In this review, we discuss the most recent research on rice tapetum development, including genomic, transcriptomic and proteomic studies. Furthermore, tapetal PCD, sporopollenin biosynthesis, ROS activity for tapetum function and its role in male reproductive development are discussed in detail. This will improve our understanding of the role of the tapetum in male fertility using rice as a model system, and provide information that can be applied in rice hybridization and that of other major crops.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Proteômica , Pólen/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
18.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260406

RESUMO

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Assuntos
Arabidopsis , Fenômenos Biológicos , Solanum lycopersicum , Solanum lycopersicum/genética , Lectinas/genética , Lectinas/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Melhoramento Vegetal , Pólen/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
19.
Funct Integr Genomics ; 23(1): 26, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576592

RESUMO

The thermo-sensitive genic male sterility (TGMS) system plays a key role in the production of two-line hybrids in rapeseed (Brassica napus). To uncover key cellular events and genetic regulation associated with TGMS, a combined study using cytological methods and RNA-sequencing analysis was conducted for the rapeseed TGMS line 373S. Cytological studies showed that microspore cytoplasm of 373S plants was condensed, the microspore nucleus was degraded at an early stage, the exine was irregular, and the tapetum developed abnormally, eventually leading to male sterility. RNA-sequencing analysis identified 430 differentially expressed genes (298 upregulated and 132 downregulated) between the fertile and sterile samples. Gene ontology analysis demonstrated that the most highly represented biological processes included sporopollenin biosynthetic process, pollen exine formation, and extracellular matrix assembly. Kyoto encyclopedia of genes and genomes analysis indicated that the enriched pathways included amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Moreover, 26 transcript factors were identified, which may be associated with abnormal tapetum degeneration and exine formation. Subsequently, 19 key genes were selected, which are considered to regulate pollen development and even participate in pollen exine formation. Our results will provide important insight into the molecular mechanisms underlying TGMS in rapeseed.


Assuntos
Brassica napus , Infertilidade Masculina , Masculino , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica/métodos , Pólen/genética , Infertilidade Masculina/genética , RNA/metabolismo , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas
20.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430574

RESUMO

Starch is the primary storage carbohydrate in mature pollen grains in many crop plants, including rice. Impaired starch accumulation causes male sterility because of the shortage of energy and building blocks for pollen germination and pollen tube growth. Thus, starch-defective pollen is applicable for inducing male sterility and hybrid rice production. Despite the importance of pollen starch, the details of the starch biosynthesis and breakdown pathway in pollen are still largely unknown. As pollen is isolated from the maternal tissue, photoassimilate transported from leaves must pass through the apoplastic space from the anther to the filial pollen, where it is stored as starch. Several sugar transporters and enzymes are involved in this process, but many are still unknown. Thus, the current review provides possible scenarios for sucrose transport and metabolic pathways that lead to starch biosynthesis and breakdown in rice pollen.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Oryza/metabolismo , Amido/metabolismo , Açúcares/metabolismo , Pólen/metabolismo , Fertilidade , Redes e Vias Metabólicas , Infertilidade Masculina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA