Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Circadian Rhythms ; 22: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617710

RESUMO

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

2.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272417

RESUMO

Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein-1). Thus, mitochondrial ATP production is increased by bicarbonate-triggered sAC-signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in ventricular cardiomyocytes.


Assuntos
Cálcio , AMP Cíclico , Cálcio/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Adenilil Ciclases/metabolismo , Dióxido de Carbono/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta , Sinalização do Cálcio/fisiologia , Trifosfato de Adenosina/metabolismo
3.
J Comput Chem ; 44(18): 1610-1623, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040476

RESUMO

Increasing the repertoire of available complementary tools to advance the knowledge of protein structures is fundamental for structural biology. The Neighbors Influence of Amino Acids and Secondary Structures (NIAS) is a server that analyzes a protein's conformational preferences of amino acids. NIAS is based on the Angle Probability List, representing the normalized frequency of empirical conformational preferences, such as torsion angles, of different amino acid pairs and their corresponding secondary structure information, as available in the Protein Data Bank. In this work, we announce the updated NIAS server with the data comprising all structures deposited until Sep 2022, 7 years after the initial release. Unlike the original publication, which accounted for only studies conducted with X-ray crystallography, we added data from solid nuclear magnetic resonance (NMR), solution NMR, CullPDB, Electron Microscopy, and Electron Crystallography using multiple filtering parameters. We also provide examples of how NIAS can be applied as a complementary analysis tool for different structural biology works and what are its limitations.


Assuntos
Aminoácidos , Proteínas , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Estrutura Secundária de Proteína , Biologia , Cristalografia por Raios X
4.
STAR Protoc ; 3(3): 101658, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36097385

RESUMO

Annotation highlights and segmentation isolates features in cryogenic electron tomograms to improve visualization and quantification of features (for example, their size and abundance, and spatial relationships with other features), facilitating phenotypic structural analyses of cellular tomograms. Here, we present a manual annotation protocol using the open-source software IMOD and describe segmentation of three types of common cellular features: membranes, large globules, and filaments. IMOD's interpolation function can improve the speed of manual annotation up to an order of magnitude.


Assuntos
Algoritmos , Elétrons , Extratos Vegetais , Software , Tomografia
5.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642964

RESUMO

The KV7.4 and KV7.5 subtypes of voltage-gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate KV7.4 and KV7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human KV7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hKV7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V50 shifts. In contrast, PUFAs inhibit activation of hKV7.4 by shifting V50 toward more positive voltages. No effect on V50 of hKV7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hKV7.5 channel's response to PUFAs is analogous to the one previously observed in hKV7.1-7.3 channels, whereas the hKV7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hKV7.4 by PUFAs.


In order to carry out their roles in the body, cells need to send and receive electrical signals. They can do this by allowing ions to move in and out through dedicated pore-like structures studded through their membrane. These channels are specific to one type of ions, and their activity ­ whether they open or close ­ is carefully controlled. In humans, defective ion channels are associated with conditions such as irregular heartbeats, epileptic seizures or hearing loss. Research has identified molecules known as polyunsaturated fatty acids as being able to control the activity of certain members of the KV7 family of potassium ion channels. The KV7.1 and KV7.2/7.3 channels are respectively present in the heart and the brain; KV7.4 is important for hearing, while KV7.5 plays a key role in regulating muscle tone in blood vessels. Polyunsaturated fatty acids can activate KV7.1 and KV7.2/7.3 but their impact on KV7.4 and KV7.5 remains unclear. Frampton et al. explored this question by studying human KV7.4 and KV7.5 channels expressed in frog egg cells. This showed that fatty acids activated KV7.5 (as for KV7.1 and KV7.2/7.3), but that they reduced the activity of KV7.4. Closely examining the structure of KV7.4 revealed that the fatty acids were binding to a different region compared to the other KV7 channels. When this site was made inaccessible, fatty acids increased the activity of KV7.4, just as for the rest of the family. These results may help to understand the role of polyunsaturated fatty acids in the body. In addition, knowing how these molecules interact with channels in the same family will be useful for optimising a drug's structure to avoid side effects. However, further research will be needed to understand the broader impact in a more complex biological organism.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ácidos Graxos Insaturados/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia
6.
Methods Mol Biol ; 2529: 137-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733014

RESUMO

As discussed in previous chapters, the methylation of specific arginine and lysine side chains is carried out by two families of histone methyltransferases, the Protein Arginine Methyltransferase (PRMT) family for arginine, and the SET domain family for lysine. The methylation of H3K79 by Dot1 is a notable outlier. In all cases, X-ray crystallography has been a powerful technique that has provided the framework for understanding the enzyme mechanism, kinetics, regulation and specificity of these enzymes and is now a platform for the design of compounds aimed to inhibit their activity either to further understand their function or in a therapeutic setting. Notably, in combination with the structures of the complementary recognition domains that recognize their products, these structures have provided an important insight into how integral the number of methyl groups added to the acceptor amine is to making histone methylation a key process in epigenetic regulation of gene transcription. Here the concepts applied to determine their structure by X-ray crystallography are outlined, with particular emphasis on lysine methylation by the SET domain.


Assuntos
Histona-Lisina N-Metiltransferase , Lisina , Arginina/metabolismo , Cristalografia por Raios X , Epigênese Genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Lisina/metabolismo
7.
J Biol Chem ; 298(4): 101734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181340

RESUMO

Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein-protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.


Assuntos
Lactonas , Extratos Vegetais , Plantas , Striga , Germinação/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Lactonas/farmacologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Plantas/parasitologia , Striga/efeitos dos fármacos , Striga/metabolismo
9.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951590

RESUMO

Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.


Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.


Assuntos
Íons/metabolismo , Metais Pesados/metabolismo , ATPases do Tipo-P/química , ATPases do Tipo-P/metabolismo , Rhodobacteraceae/enzimologia , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , ATPases do Tipo-P/classificação , Conformação Proteica , Rhodobacteraceae/classificação , Zinco/metabolismo
10.
Front Oncol ; 11: 741403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737956

RESUMO

The enhancer of zeste homolog 2 (EZH2) is a methylated modification enzyme of Histone H3-Lys 27. The high expression of EZH2 in cells is closely related to the progression, invasion, and metastasis of neoplasm. Therefore, this target is gradually becoming one of the research hot spots of tumor pathogenesis, and the inhibitors of the EZH2 enzyme are expected to become new antitumor drugs. This study used a series of virtual screening technologies to calculate the affinity between the compounds obtained from the ZINC15 database and the target protein EZH2, the stability of the ligand-receptor complex. This experiment also predicted the toxicity and absorption, distribution, metabolism, and excretion (ADME) properties of the candidate drugs in order to obtain compounds with excellent pharmacological properties. Finally, the ligand-receptor complex under in vivo situation was estimated by molecular dynamics simulation to observe whether the complex could exist steadily in the body. The experimental results showed that the two natural compounds ZINC000004217536 and ZINC000003938642 could bind tightly to EZH2, and the ligand-receptor complex could exist stably in vivo. Moreover, these two compounds were calculated to be nontoxic. They also had a high degree of intestinal absorption and high bioavailability. In vitro experiments confirmed that drug ZINC000003938642 could inhibit the proliferation and migration of osteosarcoma, which could serve as potential lead compounds. Therefore, the discovery of these two natural products had broad prospects in the development of EZH2 inhibitors, providing new clues for the treatment or adjuvant treatment of tumors.

11.
STAR Protoc ; 2(3): 100702, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34485934

RESUMO

Identification of diverse chemotypes of selective KDM4 inhibitors is important for exploring and validating the roles of KDM4s in the pathogenesis of human disease and for developing therapies. Here, we report a protocol for high-throughput screening of KDM4 inhibitors using TR-FRET demethylation functional assay. We describe this protocol for screen of KDM4B inhibitors, which can be modified to screen inhibitors of other JmjC-domain-containing KDMs. For complete details on the use and execution of this protocol, please refer to Singh et al. (2021).


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Histona Desmetilases/antagonistas & inibidores , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina , Especificidade por Substrato
12.
Curr Top Med Chem ; 21(13): 1099-1112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348623

RESUMO

Fragment-Based Drug Discovery (FBDD) is a strategy to develop potent lead molecules and is frequently used in drug discovery projects of the pharmaceutical industry. This method starts from identifying a small-molecule fragment, which usually binds weakly to the target and follows with a hit-to-lead step in which the fragment is grown into potent molecules that bind tightly to the target to affect its function. Quite a few drugs and compounds in clinical trials are developed using this approach, making FBDD a powerful strategy in drug discovery. FBDD can be applied to multiple targets and the hit rate in screening can be used in target druggability assessment. In this minireview, we provide a summary of the development of FBDD. In addition to giving a brief summary of the methods used in fragment screening, we highlight some methods that are critical in fragment growth. Biophysical methods and careful chemical modification of the fragments are the key elements in FBDD. We show several strategies that can be utilized in FBDD. We emphasize that NMR spectroscopy such as 19F-NMR and 1H-5N-HSQC experiment and X-ray crystallography are important in FBDD due to their roles in fragment screening and understanding the binding modes of the fragment hits, which provides a strategy for fragment growth.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/química , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares
13.
Nature ; 581(7808): 252-255, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415276

Assuntos
Antivirais/farmacologia , Betacoronavirus/química , Betacoronavirus/imunologia , Desenho de Fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Vacinas Virais , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/química , Azóis/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Vacinas contra COVID-19 , China , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteases Semelhantes à Papaína de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Alemanha , Ensaios de Triagem em Larga Escala , Humanos , Isoindóis , Camundongos , National Institutes of Health (U.S.)/economia , National Institutes of Health (U.S.)/organização & administração , Compostos Organosselênicos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Síncrotrons , Fatores de Tempo , Reino Unido , Estados Unidos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/imunologia
14.
J Physiol ; 598(6): 1169-1186, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012279

RESUMO

KEY POINTS: Mutations in the calmodulin protein (CaM) are associated with arrhythmia syndromes. This study focuses on understanding the structural characteristics of CaM disease mutants and their interactions with the voltage-gated calcium channel CaV 1.2. Arrhythmia mutations in CaM can lead to loss of Ca2+ binding, uncoupling of Ca2+ binding cooperativity, misfolding of the EF-hands and altered affinity for the calcium channel. These results help us to understand how different CaM mutants have distinct effects on structure and interactions with protein targets to cause disease. ABSTRACT: Calmodulinopathies are life-threatening arrhythmia syndromes that arise from mutations in calmodulin (CaM), a calcium sensing protein whose sequence is completely conserved across all vertebrates. These mutations have been shown to interfere with the function of cardiac ion channels, including the voltage-gated Ca2+ channel CaV 1.2 and the ryanodine receptor (RyR2), in a mutation-specific manner. The ability of different CaM disease mutations to discriminate between these channels has been enigmatic. We present crystal structures of several C-terminal lobe mutants and an N-terminal lobe mutant in complex with the CaV 1.2 IQ domain, in conjunction with binding assays and complementary structural biology techniques. One mutation (D130G) causes a pathological conformation, with complete separation of EF-hands within the C-lobe and loss of Ca2+ binding in EF-hand 4. Another variant (Q136P) has severely reduced affinity for the IQ domain, and shows changes in the CD spectra under Ca2+ -saturating conditions when unbound to the IQ domain. Ca2+ binding to a pair of EF-hands normally proceeds with very high cooperativity, but we found that N98S CaM can adopt different conformations with either one or two Ca2+ ions bound to the C-lobe, possibly disrupting the cooperativity. An N-lobe variant (N54I), which causes severe stress-induced arrhythmia, does not show any major changes in complex with the IQ domain, providing a structural basis for why this mutant does not affect function of CaV 1.2. These findings show that different CaM mutants have distinct effects on both the CaM structure and interactions with protein targets, and act via distinct pathological mechanisms to cause disease.


Assuntos
Arritmias Cardíacas/genética , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Humanos , Mutação , Ligação Proteica , Dobramento de Proteína
15.
Elife ; 82019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31845888

RESUMO

Hsp70 molecular chaperones are abundant ATP-dependent nanomachines that actively reshape non-native, misfolded proteins and assist a wide variety of essential cellular processes. Here, we combine complementary theoretical approaches to elucidate the structural and thermodynamic details of the chaperone-induced expansion of a substrate protein, with a particular emphasis on the critical role played by ATP hydrolysis. We first determine the conformational free-energy cost of the substrate expansion due to the binding of multiple chaperones using coarse-grained molecular simulations. We then exploit this result to implement a non-equilibrium rate model which estimates the degree of expansion as a function of the free energy provided by ATP hydrolysis. Our results are in quantitative agreement with recent single-molecule FRET experiments and highlight the stark non-equilibrium nature of the process, showing that Hsp70s are optimized to effectively convert chemical energy into mechanical work close to physiological conditions.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Algoritmos , Proteínas de Choque Térmico HSP70/química , Hidrólise , Cinética , Modelos Químicos , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Termodinâmica
16.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682223

RESUMO

Pseudokinases are considered to be the inactive counterparts of conventional protein kinases and comprise approximately 10% of the human and mouse kinomes. Here, we report the crystal structure of the Legionella pneumophila effector protein, SidJ, in complex with the eukaryotic Ca2+-binding regulator, calmodulin (CaM). The structure reveals that SidJ contains a protein kinase-like fold domain, which retains a majority of the characteristic kinase catalytic motifs. However, SidJ fails to demonstrate kinase activity. Instead, mass spectrometry and in vitro biochemical analyses demonstrate that SidJ modifies another Legionella effector SdeA, an unconventional phosphoribosyl ubiquitin ligase, by adding glutamate molecules to a specific residue of SdeA in a CaM-dependent manner. Furthermore, we show that SidJ-mediated polyglutamylation suppresses the ADP-ribosylation activity. Our work further implies that some pseudokinases may possess ATP-dependent activities other than conventional phosphorylation.


Assuntos
Proteínas de Bactérias/metabolismo , Calmodulina/metabolismo , Glutamatos/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química , Calmodulina/química , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Conformação Proteica , Fatores de Virulência/química
17.
Structure ; 27(8): 1270-1285.e6, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178221

RESUMO

In its unliganded form, the retinoic acid receptor (RAR) in heterodimer with the retinoid X receptor (RXR) exerts a strong repressive activity facilitated by the recruitment of transcriptional corepressors in the promoter region of target genes. By integrating complementary structural, biophysical, and computational information, we demonstrate that intrinsic disorder is a required feature for the precise regulation of RAR activity. We show that structural dynamics of RAR and RXR H12 regions is an essential mechanism for RAR regulation. Unexpectedly we found that, while mainly disordered, the corepressor N-CoR presents evolutionary conserved structured regions involved in transient intramolecular contacts. In the presence of RXR/RAR, N-CoR exploits its multivalency to form a cooperative multisite complex that displays equilibrium between different conformational states that can be tuned by cognate ligands and receptor mutations. This equilibrium is key to preserving the repressive basal state while allowing the conversion to a transcriptionally active form.


Assuntos
Correpressor 1 de Receptor Nuclear/genética , Receptor alfa de Ácido Retinoico/química , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/metabolismo , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína
18.
Heliyon ; 5(4): e01437, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31008387

RESUMO

Poultry is an imperative domesticated livestock species that provides high quality protein and micronutrients as meat and eggs. In poultry production, feed is the single major input constituting 70-75% of total production cost. Feed mainly consists of cereal grains, those provide energy to the birds. However, these grains contain different levels of anti-nutritional factors such as non-starch polysaccharides (NSP). These NSP are indigestible by poultry birds due to the lack of vital endogenous enzymes (carbohydrases) thus increase intestinal viscosity which slower the migration and absorption of nutrients. Consequently, these NSP may also increase the chances for infection by inducing competition within gut microbiota for digestible nutrients. This affects bird's health and increases the production cost. Therefore, there is a need to find efficient and effective solutions for these problems. Carbohydrases supplementation have an important role in poultry diets with high NSP contents. Feed enzymes are being used from years to enhance growth performance and digestibility but have limited activity for selective ingredients. New generation carbohydrases with a board range of activity and stability help to degrade the complex substrates and improve growth performance of poultry. Present review summarizes the updated literature on the use of carbohydrases to improve bird's performance and intestinal health.

19.
Elife ; 62017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29063836

RESUMO

Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca2+-dependent Cl- current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based 'disease-in-a-dish' approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.


Assuntos
Bestrofinas/genética , Bestrofinas/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Mutação de Sentido Incorreto , Doenças Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Idoso , Bestrofinas/química , Células Cultivadas , Criança , Cristalografia por Raios X , Humanos , Íons/metabolismo , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Doenças Retinianas/genética
20.
Elife ; 62017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561733

RESUMO

The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.


Assuntos
Ânions/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/ultraestrutura , Animais , Microscopia Crioeletrônica , Camundongos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA