Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768251

RESUMO

Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanopartículas , Surfactantes Pulmonares , Poluentes do Solo , Humanos , Lipoproteínas , Solo , Poluentes do Solo/metabolismo , Tensoativos , Óleos
2.
J Hazard Mater ; 401: 123420, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763708

RESUMO

An innovative foam-based method for Fenton reagents (FR) and bacteria delivery was assessed for the in situ remediation of a petroleum hydrocarbon-contaminated unsaturated zone. The surfactant foam was first injected, then reagent solutions were delivered and propagated through the network of foam lamellae with a piston-like effect. Bench-scale experiments demonstrated the feasibility of the various treatments with hydrocarbon (HC) removal efficiencies as high as 96 %. Compared to the direct injection of FR solutions, the foam-based method led to larger radii of influence and more isotropic reagents delivery, whereas it did not show any detrimental effect regarding HC oxidation. Despite 25 % of HCs were expelled from the treated zone because of high foam viscosity, average degradation rates were increased by 20 %. At field-scale, foam and reagent solutions injections in soil were tracked both using visual observation and differential electric resistivity tomography. The latter demonstrated the controlled delivery of the reactive solutions using the foam-based method. Even if the foam-based method duration is about 5-times longer than the direct injection of amendment solutions, it provides important benefits, such as the confinement of harmful volatile hydrocarbons during Fenton treatments, the enhanced reagents delivery and the 30 % lower consumption of the latter.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Poluentes do Solo/análise , Tensoativos
3.
Chemosphere ; 233: 667-676, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195271

RESUMO

In situ delivery of liquid reagents in vadose zone is limited by soil anisotropy and gravity. The enhanced delivery of persulfate (PS) as oxidant, using a new foam-based method (F-PS) was compared at bench-scale to traditional water-based (W-PS) and surfactant solution-based (S-PS) deliveries. The goal was to distribute PS uniformly in coal tar-contaminated unsaturated and anisotropic soils, both in terms of permeability and contamination. Water was the less efficiently delivered fluid because of the hydrophobicity of the contaminated soils. Surfactant enhanced PS-distribution into contaminated zones by reducing interfacial tension and inverting soil wettability. Regardless of coal tar contamination contrasts (0 vs. 5 and 1 vs. 10 g kg soil-1) or strong permeability contrasts, PS-solution injection after foam injection led to the most uniform reagents delivery. While PS-concentration varied more than 5-times between zones using W-PS and S-PS methods, it varied less than 1.6-times when the F-PS one was used. Finally, despite unfavorable conditions, the foam-based method did not show any detrimental effect regarding the oxidation of hydrocarbons compared to the W-PS and S-PS methods carried out in ideal conditions. Moreover, hydrocarbon degradation rates were slightly higher when using F-PS than S-PS due to a lower surfactant content in the targeted zone.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/análise , Poluentes do Solo/análise , Anisotropia , Alcatrão , Poluição Ambiental , Oxidantes , Oxirredução , Estresse Oxidativo , Permeabilidade , Solo/química , Tensoativos , Água
4.
Chemosphere ; 210: 977-986, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30208558

RESUMO

Homogeneous delivery of solution of oxidant in unsaturated soils is limited by soil anisotropy and gravity. An innovative injection strategy using foam was developed to improve in situ delivery. Primary foam injection before oxidant solution enhanced both the lateral and uniform delivery of reactant in isotropic and anisotropic (permeability, contamination) soils. The oxidant spread isotropically through the foam water network. This sequential injection heavily improved the delivery radius of influence (ROI), while limiting contact between surfactant and solution of oxidant in order to preserve the selective oxidation of petroleum hydrocarbons contaminant (TPH). Prior foam injection allowed uniform delivery of the solution of oxidant across the region occupied by the foam, regardless of the soil permeability contrast (1:18), whereas poor ROI were observed for the direct injection of oxidant. Experiments in contamination contrasted soils showed that foam was able to propagate in highly TPH contaminated soils (max 60% velocity reduction for 22 g.kgdry soil-1). As for permeability contrast, foam is expected to enhance reagents delivery in such contexts. This novel strategy was proven to be efficient, even for complex anisotropic conditions, and should allow to cut field costs and uncertainties associated to poor reagents delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Recuperação e Remediação Ambiental , Oxidantes/administração & dosagem , Petróleo , Poluentes do Solo/química , Solo/química , Tensoativos/química , Anisotropia , Hidrocarbonetos/química , Oxidantes/química , Permeabilidade , Poluentes do Solo/análise
5.
Sci Total Environ ; 626: 1236-1242, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898531

RESUMO

This study evaluated surface foam spraying technology, which avoids disturbing the soil, to deliver chemical oxidant and oil-degrading microbes to unsaturated soil for 30 days. Hydrogen peroxide foam was sprayed once onto diesel contaminated soil for oxidation of soil total petroleum hydrocarbon (TPH). Periodic bioaugmentation foam was sprayed every three days for biodegradation of soil TPH. Foam spraying employing oxidation-bioaugmentation serial application significantly reduced soil TPH concentrations to 550 mg·kg-1 from an initial 7470 mg·kg-1. This study selected an optimal hydrogen peroxide concentration of 5%, which is capable of treating diesel oil contaminated soil following biodegradation without supplementary iron. Application of hydrogen peroxide by foam spraying increased the infiltration of hydrogen peroxide into the unsaturated soil. Surface foam spraying provided the aqueous phase of remediation agents evenly to the unsaturated soil and resulted in relatively similar soil water content throughout the soil. The easy and even infiltration of remediation reagents increased their contact with contaminants, resulting in enhanced oxidation and biodegradation. Fractional analysis of TPH showed C18-C22 present in diesel as biodegradation recalcitrant hydrocarbons. Recalcitrant hydrocarbons were reduced by 92% using oxidation-biodegradation serial foam, while biodegradation alone only reduced the recalcitrant fraction by 25%.


Assuntos
Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Petróleo/análise , Poluentes do Solo/química , Biodegradação Ambiental , Oxirredução , Solo , Poluentes do Solo/análise
6.
Chemosphere ; 207: 565-572, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29843033

RESUMO

This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C18 to C22) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially.


Assuntos
Biodegradação Ambiental , Gasolina/análise , Petróleo/análise , Compostos de Sódio/química , Poluentes do Solo/análise , Solo/química , Sulfatos/química , Microbiologia do Solo
7.
J Hazard Mater ; 286: 164-70, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25577318

RESUMO

Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.


Assuntos
Petróleo/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Temperatura Baixa , Contagem de Colônia Microbiana , Poluição Ambiental , Hidrocarbonetos , Solo , Propriedades de Superfície , Tensoativos , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA