Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflammopharmacology ; 32(3): 1743-1757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568399

RESUMO

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.


Assuntos
Benzilisoquinolinas , Inflamação , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Humanos , Animais , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 727-742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288265

RESUMO

Background: A sequential release co-delivery system is an effective strategy to improve anti-cancer efficacy. Herein, multicomponent-based liposomes (TET-CTM/L) loaded with tetrandrine (TET) and celastrol (CEL)-loaded coix seed oil microemulsion (CTM) were fabricated, which showed synergistic anti-liver cancer activities. By virtue of Enhanced Permeability and Retention (EPR) effect, TET-CTM/L can achieve efficient accumulation at the tumor site. TET was released initially to repair abnormal vessels and decrease the fibroblasts, and CTM was released subsequently for eradication of tumor tissue. Methods: TEM (transmission electron microscopy) and DLS (dynamic light scattering) were adopted to characterize the TET-CTM/L. Flow cytometry was adopted to examine the cellular uptake and cytotoxicity of HepG2 cells. The HepG2 xenograft nude mice were adopted to evaluate the anti-tumor efficacy and systemic safety of TET-CTM/L. Results: TEM images of TET-CTM/L showed the structure of small particle size of CTM within large-size liposomes, indicating that CTM can be encapsulated in liposomes by film dispersion method. In in vitro studies, TET-CTM/L induced massive apoptosis toward HepG2 cells, indicating synergistic cytotoxicity against HepG2 cells. In in vivo studies, TET-CTM/L displayed diminished systemic toxicity compared to celastrol or TET used alone. TET-CTM/L showed the excellent potential for tumor-targeting ability in a biodistribution study. Conclusion: Our study provides a new strategy for combining anti-cancer therapy that has good potential not only in the treatment of liver cancer but also can be applied to the treatment of other solid tumors.


Assuntos
Benzilisoquinolinas , Coix , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Animais , Camundongos , Humanos , Lipossomos , Coix/química , Camundongos Nus , Distribuição Tecidual , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Óleos de Plantas/química
3.
Phytother Res ; 38(2): 527-538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909161

RESUMO

Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.


Assuntos
Benzilisoquinolinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular , Transdução de Sinais , Inflamação , Pele
4.
Mol Pharm ; 20(11): 5463-5475, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37823637

RESUMO

Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.


Assuntos
Benzilisoquinolinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Portadores de Fármacos , Biomimética , Neoplasias Pulmonares/tratamento farmacológico , Benzilisoquinolinas/farmacologia
5.
AAPS PharmSciTech ; 24(7): 181, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697172

RESUMO

In this study, nano-strategy for combined medication of active compounds from traditional Chinese medicine herbs was proposed to achieve the synergistic effects of inhibiting the doxorubicin (DOX) resistance, reducing the cardio-toxicity, and improving the treatment efficacy simultaneously. Dihydroartemisinin (DHA) and tetrandrine (TET) were co-delivered for the first time to treat DOX resistance of breast cancer with multi-pathway mechanism. Tumor micro-environment sensitivity prescription was adopted to enhance the reversal effect of DOX resistance nearly 50 times (resistance index, RI was 46.70) and uptake ability. The DHA-TET pH-sensitive liposomes (DHA-TET pH-sensitive LPs) had a good spherical structure and a uniform dispersion structure with particle size, polydispersity index (PDI), and zeta potential of 112.20 ± 4.80 nm, 0.20 ± 0.02, and - 8.63 ± 0.74 Mv, and was stable until 14 days under the storage environment of 4°C and for 6 months at room temperature environment. With the DOX resistance reversing ability increased, the inhibition effect of DHA-TET pH-sensitive LPs on both MCF-7/ADR cells and MCF-7 cells was significantly enhanced; meanwhile, the toxicity on cardiac cell (H9c2) was lowered. Ferroptosis induced by the DHA was investigated showing that the intracellular reactive oxygen species (ROS) and lipid peroxidation were increased to promote the synergistic effect through the due-loaded nano-carrier, providing a promising alternative for future clinical application.


Assuntos
Lipopolissacarídeos , Lipossomos , Medicina Tradicional Chinesa , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio
6.
Artigo em Chinês | MEDLINE | ID: mdl-37006149

RESUMO

Objective: To analyze the safety, effectiveness, economics, innovation, suitability and accessibility of tetrandrine in the treatment of pneumoconiosis, and provide evidence-based basis for health policy decision-making and clinical practice. Methods: In July 2022, the system searched PubMed, Embase, the Cochrane Library, CNKI, Wanfang, SinoMed databases (the retrieval time was from the establishment of the database to June 30, 2022), screened the documents that meet the standards, extracted and evaluated the data, and used the "HTA checklist" developed by the International Network of Agencies for Health Technology Assessment (INAHTA) to evaluate the HTA report. AMSTAR-2 Scale was used to evaluate the quality of systematic evaluation/Meta analysis. CHEERS Scale was used to evaluate the quality of pharmacoeconomics research. The included cohort study or case-control study was evaluated with the Newcastle-Ottawa Scale. The included randomized controlled trial (RCT) studies were evaluated using the Cochrane Risk Bias Assessment Tool (Cochrane RCT) quality evaluation criteria. Comprehensive comparison and analysis based on the characteristics of the data included in the study. Results: A total of 882 related literatures were detected from the initial screening. According to relevant standards, 8 RCT studies were finally selected for analysis. Statistical results showed that basic treatment with tetrandrine could better improve FEV(1) (MD=0.13, 95%CI: 0.06-0.20, P<0.001), FEV(1)/FVC (MD=4.48, 95%CI: 0.61-8.35, P=0.02) and clinical treatment efficiency. Tetrandrine had a low incidence of adverse reactions. The affordability coefficient of tetrandrine tablets was 0.295-0.492. Conclusion: Tetrandrine can improve the clinical symptoms and pulmonary ventilation function of pneumoconiosis patients, most of the adverse reactions are mild, and the clinical application is safe.


Assuntos
Benzilisoquinolinas , Medicamentos de Ervas Chinesas , Pneumoconiose , Humanos , Pneumoconiose/tratamento farmacológico , Benzilisoquinolinas/uso terapêutico , Estudos de Casos e Controles
7.
Am J Chin Med ; 51(2): 425-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36692485

RESUMO

Targeting the stemness of triple-negative breast cancer (TNBC) is a potential therapeutic approach for treating TNBC. Tetrandrine, a natural plant alkaloid, has several anticancer effects. Here, we aimed to evaluate the efficacy of tetrandrine in cancer stemness and epithelial to mesenchymal transition (EMT) in TNBC, and to explore the underlying mechanisms. The effects of tetrandrine on cell growth, cell viability, cell stemness capacity, cell migration, and cell invasion, as well as the molecules involved in these processes, were investigated in a cell culture system. An in vivo xenograft tumor and lung metastasis study was performed using nude mice to verify the effects and mechanisms of tetrandrine. Tetrandrine exhibited antiproliferative and cell cycle arrest activities in TNBC cell lines, significantly reduced aldehyde dehydrogenase and CD44[Formula: see text]CD24[Formula: see text] characteristic subpopulation, and successfully prevented mammosphere formation. It suppressed migration and invasion, enhanced anoikis, and regulated the expression of proteins involved in the EMT, including E-cadherin, Vimentin, and Occludin, in both TNBC cells and MDA-MB-231 spheroid cells. Further studies revealed that tetrandrine downregulated the expression of superoxide dismutase 1 (SOD1) and catalase and induced reactive oxygen species (ROS) production, which subsequently contributed to the inhibition of cell EMT and stemness. The in vivo studies also showed that tetrandrine inhibited tumor growth and metastasis of both adherent normal cells, and flow cytometry sorted specific CD44[Formula: see text]CD24[Formula: see text] breast cancer stem cells, which could be rescued by SOD1 overexpression. The results of this study suggest that tetrandrine could effectively inhibit breast cancer stem cell characteristics and the EMT process via the SOD1/ROS signaling pathway. Therefore, tetrandrine can be considered a promising anti-TNBC agent.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Superóxido Dismutase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Células-Tronco Neoplásicas/patologia , Movimento Celular
8.
Chem Biol Drug Des ; 101(4): 927-936, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593659

RESUMO

Tetrandrine (Tet), a traditional Chinese herbal medicine extract, exhibits anti-cancer effect on many types of cancer. Nonetheless, the action mechanism of Tet in gastric cancer (GC) is still largely unclear. In the current study, proliferation, invasion, and migration of the BGC-823 and MKN-45 cells were effectively suppressed by Tet treatment in a dose-dependent manner. Moreover, Tet suppressed expression of the proliferation-associated protein PCNA, the interstitial cell phenotype N-cadherin, and the extracellular matrix-associated MMP-2 and MMP-9 in BGC-823 and MKN-45 cells in a dose-dependent manner. PI3K/AKT/mTOR, a cancer promoting signaling, was inactivated by Tet in a dose-dependent manner in BGC-823 and MKN-45 cells. Furthermore, our results demonstrated that the inhibition of Tet to PCNA, N-cadherin, MMP-2, and MMP-9 expression was partly rescuedby AKT inhibitor or mTOR inhibitor. In animal experiments, tumor growth was inhibited by Tet administration in a dose-dependent manner. In conclusion, the current data indicated that Tet had a critical effect on inhibiting BGC-823 and MKN-45 cells proliferation, migration, invasion, and tumor growth via regulating PI3K/AKT/mTOR signaling pathway, suggesting that Tet might be a potential treatment for GC.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Movimento Celular , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
9.
Artigo em Chinês | WPRIM | ID: wpr-970741

RESUMO

Objective: To analyze the safety, effectiveness, economics, innovation, suitability and accessibility of tetrandrine in the treatment of pneumoconiosis, and provide evidence-based basis for health policy decision-making and clinical practice. Methods: In July 2022, the system searched PubMed, Embase, the Cochrane Library, CNKI, Wanfang, SinoMed databases (the retrieval time was from the establishment of the database to June 30, 2022), screened the documents that meet the standards, extracted and evaluated the data, and used the "HTA checklist" developed by the International Network of Agencies for Health Technology Assessment (INAHTA) to evaluate the HTA report. AMSTAR-2 Scale was used to evaluate the quality of systematic evaluation/Meta analysis. CHEERS Scale was used to evaluate the quality of pharmacoeconomics research. The included cohort study or case-control study was evaluated with the Newcastle-Ottawa Scale. The included randomized controlled trial (RCT) studies were evaluated using the Cochrane Risk Bias Assessment Tool (Cochrane RCT) quality evaluation criteria. Comprehensive comparison and analysis based on the characteristics of the data included in the study. Results: A total of 882 related literatures were detected from the initial screening. According to relevant standards, 8 RCT studies were finally selected for analysis. Statistical results showed that basic treatment with tetrandrine could better improve FEV(1) (MD=0.13, 95%CI: 0.06-0.20, P<0.001), FEV(1)/FVC (MD=4.48, 95%CI: 0.61-8.35, P=0.02) and clinical treatment efficiency. Tetrandrine had a low incidence of adverse reactions. The affordability coefficient of tetrandrine tablets was 0.295-0.492. Conclusion: Tetrandrine can improve the clinical symptoms and pulmonary ventilation function of pneumoconiosis patients, most of the adverse reactions are mild, and the clinical application is safe.


Assuntos
Humanos , Pneumoconiose/tratamento farmacológico , Benzilisoquinolinas/uso terapêutico , Medicamentos de Ervas Chinesas , Estudos de Casos e Controles
10.
Medicina (Kaunas) ; 58(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36143871

RESUMO

Background and objectives: The COVID-19 pandemic continues worldwide, and there is no effective treatment to treat it. Chinese medicine is considered the recommended treatment for COVID-19 in China. This study aimed to examine the effectiveness of tetrandrine in treating COVID-19, which is originally derived from Chinese medicine. Materials and Methods: A total of 60 patients, categorized into three types (mild, moderate, severe), from Daye Hospital of Chinese Medicine with a diagnosis of COVID-19 were included in this study. Demographics, medical history, treatment, and results were collected. We defined two main groups according to the clinical outcome between improvement and recovery. All underlying factors including clinical outcomes were assessed in the total number of COVID-19 patients and moderate-type patients. Results: In a total of 60 patients, there were significant differences in the clinical outcome underlying treatment with antibiotics, tetrandrine, and arbidol (p < 0.05). When the comparison was limited to the moderate type, treatment with tetrandrine further increased recovery rate (p = 0.007). However, the difference disappeared, and no association was indicated between the clinical outcome and the treatment with and without antibiotic (p = 0.224) and arbidol (p = 0.318) in the moderate-type patients. In all-type and moderate-type patients, tetrandrine improved the rate of improvement in cough and fatigue on day 7 (p < 0.05). Conclusions: Tetrandrine may improve clinical outcome in COVID-19 patientsand could be a promising potential natural antiviral agent for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Benzilisoquinolinas , Humanos , Pandemias , SARS-CoV-2 , Resultado do Tratamento
11.
Phytomedicine ; 104: 154325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35820303

RESUMO

BACKGROUND: Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE: This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS: A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS: TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION: The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Doença Hepática Induzida por Substâncias e Drogas , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Sítios de Ligação , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Transferases/metabolismo , Triterpenos , Ácido Ursólico
12.
Drug Des Devel Ther ; 15: 2907-2919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262258

RESUMO

BACKGROUND: Endometrial cancer (EC) is one of the most common gynaecological malignancies, and its incidence has been rising over the past decade. Tetrandrine, a bisbenzylisoquinoline alkaloid, has been isolated from a vine used in traditional Chinese medicine, Stephania tetrandra. However, the key mechanism of tetrandrine in EC is still unclear. PURPOSE: This research was designed to predict the molecular mechanisms of tetrandrine against EC based on network pharmacology and to further verify these predictions by in vitro experiments. METHODS: The potential therapeutic targets of tetrandrine against EC were predicted by using public databases. Afterwards, the protein-protein interaction (PPI) network of the common targets was constructed, and the key gene targets were obtained. Biological function and pathway enrichment analyses were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Furthermore, molecular docking and in vitro experiments were carried out to verify the predictions. The cell counting kit­8 (CCK­8) assay, Hoechst 33258 staining, flow cytometry analysis, qRT-PCR, Western blot analysis and an immunofluorescence assay were performed. RESULTS: Our findings identified 111 potential therapeutic targets of tetrandrine against EC. We obtained 7 key gene targets from the PPI network analysis. Furthermore, GO enrichment analysis indicated that these targets were mainly associated with metabolic processes, responses to stimulus, and biological regulation. The KEGG pathway analysis showed that the common targets were mainly distributed in the PI3K/Akt signalling pathway. A potential interaction of tetrandrine with Akt1 was revealed by molecular docking. In addition, in vitro experiments showed that tetrandrine significantly inhibited cell proliferation and induced apoptosis in Ishikawa and HEC-1-B cells in dose- and time-dependent manners. The results also revealed that tetrandrine can downregulate the expression of Bcl-2 and upregulate the expression of Bax at the mRNA level. The mRNA levels of Akt were not significantly different in the various tetrandrine (0, 10 and 20µM) groups. However, Western blot analysis demonstrated that the protein expression ratios of p-Akt/Akt decreased at the protein level. The results were further confirmed by immunofluorescence assays. CONCLUSION: Based on bioinformatic analysis and experimental verification, our findings demonstrated that tetrandrine exerted tumour-suppressive effects on EC by regulating the PI3K/Akt signalling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias do Endométrio/patologia , Feminino , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinase/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Stephania tetrandra/química , Fatores de Tempo
13.
Biomed Pharmacother ; 141: 111931, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328111

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Doenças Inflamatórias Intestinais/imunologia , Compostos Fitoquímicos/farmacologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos
14.
Phytomedicine ; 90: 153627, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34247115

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder prevalent in the aged population. Tetrandrine is a natural metabolite isolated from herbal medicine Stephania tetrandra with various activities. PURPOSE: In this study, we investigated the therapeutic role of tetrandrine in 5XFAD mouse, a transgenic model of AD. METHODS: 5XFAD mice were intraperitoneally injected with saline or different doses of tetrandrine (10, 20, and 40 mg/kg per 2 days) from the age of 5 months to 7 months followed by the determination of cognitive ability, amyloid plaque load, cell apoptosis, and inflammation in the brain. In vitro, the protective roles of tetrandrine against inflammatory activation of microglia and the resulting neurotoxicity were studied in BV2 cells and differentiated PC12 cells, respectively. RESULTS: Morris water maze test showed that two months of tetrandrine treatment dose-dependently improved the cognitive ability of 5XFAD mice. Immunostaining against Aß 1-42 demonstrated reduced amyloid plaque deposition in the brain of tetrandrine-treated 5XFAD mice. TUNEL assay revealed decreased cell apoptosis in the hippocampus after tetrandrine treatment. Further, RT-PCR showed that the ectopic transcription of inflammation-associated genes including TNFα, IL-1ß, IL-6, COX-2, iNOS, and p65 was reversed in 5XFAD mice treated with tetrandrine. In vitro, Aß 1-42 stimulated the secretion of inflammatory cytokines TNFα and IL-1ß in microglial BV2 cells as determined by ELISA, which was suppressed by tetrandrine pre-treatment. Tetrandrine pre-treatment also inhibited the expression of TLR4, p65, iNOS, and COX-2 in BV2 cells induced by Aß 1-42. Most importantly, treatment of PC12-derived neuron-like cells with conditional medium from Aß 1-42-stimulated BV2 cells remarkably impaired cell viability and promoted cell apoptosis, which was attenuated by the conditional medium from BV2 cells with tetrandrine pre-treatment. CONCLUSION: Collectively, findings in this study demonstrated that tetrandrine ameliorates AD by suppressing microglia-mediated inflammation and neurotoxicity.


Assuntos
Doença de Alzheimer , Benzilisoquinolinas/farmacologia , Microglia/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos
15.
Pharmacol Res ; 170: 105728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119622

RESUMO

Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Medicina Tradicional Chinesa , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
16.
Genes Dis ; 8(3): 373-383, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997184

RESUMO

Despite advances in screening and treatment, colon cancer remains one of the leading causes of cancer-related death. Finding novel and useful drug treatment targets is also an urgent need for clinical applications. Tetrandrine (Tet) is extracted from the Chinese medicinal herbal medicine, which is a well-known calcium blocker with a variety of pharmacological activities, including anti-cancer. In this study, we recruited cell viability assay, flow cytometry analysis, cloning formation to confirm that Tet can inhibit the proliferation of SW620 cells, and induce apoptosis. Mechanically, we confirmed that Tet up-regulates the mRNA and protein level of BMP9 in SW620 cells. Over-expression BMP9 enhances the anti-cancer effects of Tet in SW620 cells, but these effects can be partly reversed by silencing BMP9. Also, Tet reduces phosphorylation of Aktl/2/3 in SW620 cells, which could be elevated by overexpressed BMP9 and impaired by silencing BMP9. Furthermore, we demonstrated that Tet reduces phosphorylated PTEN, which can be promoted by overexpressed BMP9, analogously also be attenuated through silencing BMP9. Finally, we introduced a xenograft tumor model to investigate the anti-proliferative effect of Tet, further to explore the effects of BMP9 and PTEN in SW620 cells. Our findings suggested that the anti-cancer activity of Tet in SW620 cells may be mediated partly by up-regulating BMP9, followed by inactivation PI3K/Akt through up-regulating PTEN at least.

17.
Phytother Res ; 35(7): 4007-4021, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038010

RESUMO

Pituitary adenoma (PA) is a benign intracranial neoplasm originated from pituitary gland. Surgery is the first-line therapy for most of PAs, but lead to unsatisfactory prognosis in some cases. Tetrandrine (Tet) has anticancer effect on some cancers. However, growth inhibition effect on PA is unknown. To elucidate the inhibitory effect of Tet on the growth of PA and its potential mechanisms, we validated the in vitro and in vivo anti-PA effect of Tet and illustrated the cellular and molecular alterations by confocal microscopy observation, flow cytometry, and RNA interference. Tet inhibited PA cell growth in vitro and tumor progression in vivo. Tet induced autophagy and apoptosis in a dose-dependent manner. Low dosage (1.25 µM) of Tet induced PA cell autophagy by down-regulation of MAPK/STAT3 signal. While, higher dosage (5.0 µM) of Tet partially induced PA cell death through caspase-dependent apoptosis. Autophagy inhibitors enhanced Tet-induced caspase activity and apoptotic cell death. These findings demonstrated that Tet has anti-PA effect by inducing autophagy and apoptosis through MAPK/STAT3 signaling pathway attenuation and autophagy inhibition might enhance its anti-PA effect, indicating that Tet (or combined with autophagy inhibitor) is a potential therapeutic regimen for PAs.


Assuntos
Antineoplásicos Fitogênicos , Benzilisoquinolinas , Neoplasias Hipofisárias , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Hipofisárias/tratamento farmacológico , Ratos
18.
Integr Cancer Ther ; 20: 1534735421996822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33660534

RESUMO

BACKGROUND: Tamoxifen is one of the medicines for adjuvant endocrine therapy of hormone-dependent breast cancer. However, development of resistance to tamoxifen occurs inevitably during treatment. This study aimed to determine whether sensitivity of tamoxifen-resistant breast cancer cells (TAM-R) could be reinstated by tetrandrine (Tet). METHODS: All experiments were conducted in TAM-R cells derived from the MCF-7 breast cancer cell line by long-term tamoxifen exposure. Cell growth, apoptosis, and autophagy were end-points that evaluated the effect of Tet (0.9 µg/ml, 1.8 µg/ml, and 3.75 µg/ml) alone or in combination with TAM (1 µM). Cell apoptosis was determined by an ELISA assay and autophagy was determined by fluorescent staining using the Enzo autophagy detection kit. Immunoblotting was used to evaluate markers for apoptosis, autophagy, and related signal pathway molecules. RESULTS: Growth of TAM-R cells was significantly inhibited by Tet. Combination of Tet with tamoxifen induced a greater inhibition on cell growth than tamoxifen alone, which was predominantly due to enhancement of pro-apoptotic effect of TAM by Tet. Autophagy was significantly inhibited in TAM-R cells treated with Tet plus TAM as shown by increased autophagosomes and the levels of LC3-II and p62. At 0.9 µg/ml, Tet increased the levels of both apoptosis and autophagy markers. Among them increase in p53 levels was more dramatic. CONCLUSIONS: Tet as a monotherapy inhibits TAM-R cells. Tet potentiates the pro-apoptotic effect of TAM via inhibition of autophagy.


Assuntos
Benzilisoquinolinas , Neoplasias da Mama , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Apoptose , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Tamoxifeno/farmacologia
19.
J Integr Med ; 19(4): 311-316, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33583757

RESUMO

Tetrandrine (TET) and fangchinoline (FAN) are dominant bisbenzylisoquinoline (BBIQ) alkaloids from the roots of Stephania tetrandra of the family Menispermaceae. BBIQ alkaloids comprise two benzylisoquinoline units linked by oxygen bridges. The molecular structures of TET and FAN are exactly the same, except that TET has a methoxy (-OCH3) group, while FAN has a hydroxyl (-OH) group at C7. In this overview, the current knowledge on the chemistry, pharmacology and anticancer properties of TET and FAN have been updated. The focus is on colon and breast cancer cells, because they are most susceptible to TET and FAN, respectively. Against colon cancer cells, TET inhibits cell proliferation and tumor growth by inducing apoptosis and G1 cell cycle arrest, and suppresses adhesion, migration and invasion of cells. Against breast cancer cells, FAN inhibits cell proliferation by inducing apoptosis, G1-phase cell cycle arrest and inhibits cell migration. The processes involve various molecular mechanisms and signaling pathways. Some insights on the ability of TET and FAN to reverse multi-drug resistance in cancer cells and suggestions for future research are provided.


Assuntos
Alcaloides , Benzilisoquinolinas , Stephania tetrandra , Alcaloides/farmacologia , Benzilisoquinolinas/farmacologia
20.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6520-6529, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34994145

RESUMO

Glioblastoma is the most common intracranial primary malignant tumor, which leads to the poor quality of life of patients and has a high recurrence rate. Chemotherapy is a vital part in the treatment of this disease. Tetrandrine(Tet) is an active ingredient extracted from the root of the Chinese medicinal plant Stephania tetrandra, which has been proved with a wide range of pharmacological effects including anti-tumor. However, there are few studies regarding the effect of Tet on glioma. In this study, MTT and BrdU assays were employed to detect the effect of Tet on the proliferation of LN229 glioblastoma cells; flow cytometry was used to analyze the cycle distribution and apoptosis; plate cloning assay and soft agar colony formation assay were performed to study the colony formation ability of LN229 cells exposed to Tet; scratch assay and Transwell assay were conducted to detect the ability of migration and invasion; Western blot was adopted to the exploration of the molecular mechanism. The MTT and BrdU assays showed that Tet inhibited the proliferation of LN229 cells in a time-and dose-dependent manner. The plate cloning assay and soft agar colony formation assay showed that Tet weakened the colony formation of LN229 cells in vitro; cytometry assay showed that Tet blocked cells in the G_1 phase and promoted cell apoptosis; scratch and Transwell assays proved that Tet inhibited the migration and invasion of LN229 cells; Western blot results showed that Tet down-regulated the expression levels of CDK2, CDK6, cyclin D1, cyclin E1, snail, slug, vimentin, and N-cadherin, while up-regulated the level of E-cadherin. The results indicate that Tet has a certain inhibitory effect on the proliferation, migration, and invasion of LN229 glioblastoma cells, and such effect may be related to the participation of Tet in the regulation of c-Myc/p27 axis and snail signaling pathway.


Assuntos
Glioblastoma , Apoptose , Benzilisoquinolinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA