Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BJU Int ; 134(1): 110-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587276

RESUMO

OBJECTIVE: To report the protocol of a study evaluating the efficacy of transdermal oestradiol (E2) gel in reducing the adverse effects of androgen deprivation therapy (ADT), specifically on sexual function, and to assess the utility of E2 in combination with supervised exercise. STUDY DESIGN AND METHODS: The primary endpoint of this open-label Phase IIA randomized controlled trial is the efficacy of transdermal E2 gel. Secondary endpoints include: (i) the occurrence of ADT-induced adverse effects; (ii) the safety and tolerability of E2; (iii) the impact of E2 with or without exercise on physical, physiological, muscle, and systemic biomarkers; and (iv) quality of life. The trial will recruit high-risk PCa patients (n = 310) undergoing external beam radiation therapy with adjuvant subcutaneous ADT. Participants will be stratified and randomized in a 1:1 ratio to either the E2 + ADT arm or the ADT-only control arm. Additionally, a subset of patients (n = 120) will be randomized into a supervised exercise programme. RESULTS: The primary outcome is assessed according to the efficacy of E2 in mitigating the deterioration of Expanded Prostate Cancer Index Composite sexual function domain scores. Secondary outcomes are assessed according to the occurrence of ADT-induced adverse effects, safety and tolerability of E2, impact of E2 with or without exercise on physical performance, body composition, bone mineral density, muscle size, systematic biomarkers, and quality of life. CONCLUSION: The ESTRACISE study's innovative design can offer novel insights about the benefits of E2 gel, and the substudy can reinforce the benefits resistance training and deliver valuable new novel insights into the synergistic benefits of E2 gel and exercise, which are currently unknown. TRIAL REGISTRATION: The protocol has been registered in euclinicaltrials.eu (2023-504704-28-00) and in clinicaltrials.gov (NCT06271551).


Assuntos
Administração Cutânea , Antagonistas de Androgênios , Estradiol , Terapia por Exercício , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Estradiol/administração & dosagem , Terapia por Exercício/métodos , Neoplasias da Próstata/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Int J Biometeorol ; 68(6): 1061-1072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427095

RESUMO

Pelotherapy treatments in thermal spas, which utilize peloids composed of clay minerals mixed with saltwater or mineral-medicinal water, can have various effects on spa users, ranging from therapeutic to potential adverse reactions. Despite the widespread use of peloids, comprehensive information on the penetration and permeation of essential and potentially toxic elements into deeper layers of the skin during pelotherapy is limited. Understanding the concentrations of these elements is crucial for evaluating therapeutic benefits and ensuring safety. This study investigates the in vitro availability and absorption of calcium, magnesium, and potentially toxic elements in two peloids, considering their formulation matrix. To replicate the pelotherapy methodology, an in vitro permeation experiment was conducted using a vertical diffusion chamber (Franz cells) and a biological system with human skin membranes from five Caucasian women, age range between 25 and 51 years. The experiment involved heating the peloids to 45℃. The results emphasize the possible transport properties of chemical elements in peloids, providing valuable information related to potential therapeutic efficacy and safety considerations. Despite no apparent differences between peloids' chemical composition, the method identified permeation variations among chemical elements. The methodology employed in this study adheres to the guidelines outlined by OECD for analyzing skin absorption through an in vitro approach. Furthermore, it aligns with the associated OECD guidance document for conducting skin absorption studies. The replicability of this methodology not only facilitates the analysis of peloids pre-formulation but also provides a robust means to evaluate the effectiveness of therapeutic elements during topical administration, particularly those with potential toxicity concerns.


Assuntos
Cálcio , Magnésio , Absorção Cutânea , Humanos , Magnésio/farmacocinética , Magnésio/metabolismo , Projetos Piloto , Adulto , Feminino , Cálcio/farmacocinética , Cálcio/análise , Pessoa de Meia-Idade , Peloterapia , Pele/metabolismo , Técnicas In Vitro
3.
Heliyon ; 10(3): e25284, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322847

RESUMO

Ustukhuddus (Lavandula stoechas L.) has been extensively used orally and topically in treating various neurological disorders, including dementia. The optimum potential of traditional dosage forms of Ustukhuddus is limited for various reasons. Transdermal drug delivery system (TDDS) is a novel means of drug delivery and is known to overcome the drawbacks associated with traditional dosage forms. The current study aimed at fabricating and evaluating Ustukhuddus hydro-alcoholic extract (UHAE) and essential oil (UEO) loaded matrix-type transdermal patches having a combination of hydrophilic - hydroxyl propyl methyl cellulose (HPMC) and hydrophobic - ethyl cellulose (EC) polymers. ATR-FTIR, DSC, XRD, and SEM analysis were carried out to study drug-polymer interactions, confirming the formation of developed patches and drug compatibility with excipients. We assessed the fabricated patches to evaluate their physicochemical properties, in vitro drug release, and permeation characteristics via ex vivo experiments. The physicochemical characteristics of patches showcased the development of good and stable films with clarity, smoothness, homogeneity, optimum flexibility and free from causing skin irritancy or sensitization. In vitro drug release and ex vivo permeation profile of developed patches were evaluated employing Franz diffusion cells. UHAE and UEO patches exhibited a cumulative drug release of 81.61 and 85.24 %, respectively, in a sustained-release manner and followed non-Fickian release mechanisms. The ex vivo permeation data revealed 66.82 % and 76.41 % of drug permeated from UHAE and UEO patches, respectively. The current research suggests that the formulated patches are more suitable for TDDS and hold potential significance in the treatment of dementia, contributing to enhanced patient compliance, thereby highlighting the implication of Unani Medicine in Nisyan (Dementia) treatment.

4.
Gels ; 10(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247768

RESUMO

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.

5.
Curr Drug Deliv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178667

RESUMO

BACKGROUND: Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications. OBJECTIVES: The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. METHODS: Data we searched from PubMed, Google Scholar, and ScienceDirect. RESULTS: In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. CONCLUSION: In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.

6.
ACS Nano ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254288

RESUMO

Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.

7.
Biomed Microdevices ; 26(1): 9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189892

RESUMO

There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.


Assuntos
Lidocaína , Polímeros , Humanos , Anestesia Local , Álcool de Polivinil , Povidona
8.
Recent Adv Drug Deliv Formul ; 18(1): 21-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38258784

RESUMO

Using skin patches to deliver drugs is dependable and doesn't have the same issues as permeation enhancers, which help drugs get through the skin but struggle because of the skin's natural barrier. Strategies are required to increase topical bioavailability to enhance drug absorption. Natural compounds offer a promising solution by temporarily reducing skin barrier resistance and improving drug absorption. Natural substances allow a wider variety of medications to be distributed through the stratum corneum, offering a dependable approach to enhancing transdermal drug delivery. Natural substances have distinct advantages as permeability enhancers. They are pharmacologically effective and safe, inactive, non-allergenic, and non-irritating. These characteristics ensure their suitability for use without causing adverse effects. Natural compounds are readily available and well tolerated by the body. Studies investigating the structure-activity relationship of natural chemicals have demonstrated significant enhancer effects. By understanding the connection between chemical composition and enhancer activity, researchers can identify effective natural compounds for improving drug penetration. In conclusion, current research focuses on utilizing natural compounds as permeability enhancers in transdermal therapy systems. These substances offer safety, non-toxicity, pharmacological inactivity, and non-irritation. Through structure-activity relationship investigations, promising advancements have been made in enhancing drug delivery. Using natural compounds holds enormous potential for improving the penetration of trans-dermally delivered medications.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos , Permeabilidade , Absorção Cutânea , Humanos , Absorção Cutânea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Permeabilidade/efeitos dos fármacos , Animais , Pele/metabolismo , Pele/efeitos dos fármacos , Preparações de Plantas/administração & dosagem , Preparações de Plantas/farmacologia , Preparações de Plantas/química , Relação Estrutura-Atividade , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Produtos Biológicos/farmacologia
9.
Hypertens Res ; 47(2): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030803

RESUMO

Nifedipine has exhibited to be the oldest primary drug having promising therapeutic potential for hypertension, angina pectoris, and pre-eclampsia treatment which are the most emergency serious complications worldwide. Moreover, for long-term treatment transdermal route of delivery using polymeric dissolving microneedles (DMNs) patches has shown greater advantages, thus enhancing treatment compliance, painless, reducing the daily number of doses, prolonged release in a controlled manner, and variable bioavailability making this an ideal candidate for the transdermal therapeutic system. Here, we fabricated DMN patches made of gelatin and PVP using PDMS molds loaded with nifedipine drugs for a controlled painless delivery for a longer stable duration. The prepared gelatin-PVP (gel-PVP) DMN patches loaded with nifedipine were fabricated by centrifugation casting method. The characterization results displayed excellent mechanical strength of the needles to penetrate the skin. SEM and confocal microscopy showed penetration of the needles up to 567-600 µm using rhodamine B applied to the hairless punctured skin site. FTIR study exhibited no degradation of the drug was observed while fabricating the DMNs patch at different pH 7.4 and 4. Skin resealing test proved that there was immediate resealing of the skin observed within 10-15 min. Further in-vitro drug release profile study was carried out by dissolution method at different pH 7.4 and 4 showed sustained release of the drug up to 96 ± 2% till 48-72 h avoiding polymer or drug loss which was quantified by UV vis spectrophotometer at 235 nm absorbance showed stable release of the drug upto 48-72 h. A stability study carried out by the HPLC method showed the DMN patches loaded with the drug were found to be stable for up to 30 days at 25 °C. This novel preliminary data are the first study to our knowledge introducing these fabricated nifedipine gel-PVP DMN patches were found to be very efficient and showed prolonged controlled release up to 48-72 h thereby treating hypertension in a convenient, painless manner. This DMN patch-formulated design might act as a potential approach leading to a controllable, self-administrative, and rapid transdermal delivery system.


Assuntos
Gelatina , Hipertensão , Humanos , Gelatina/metabolismo , Nifedipino , Sistemas de Liberação de Medicamentos/métodos , Pele , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
10.
J Pharm Sci ; 113(2): 407-418, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972891

RESUMO

In Vitro Permeation Test (IVPT) is commonly used to evaluate skin penetration of chemicals and performance of dermatological products. For a permeant with low aqueous solubility, an additive that is expected not to alter the skin barrier can be used in the receptor solution to improve permeant solubility. The objective of this study was to (a) evaluate the effects of these additives in IVPT receptor solution on skin permeability of model permeants and skin electrical resistance and (b) determine the solubility of the permeants in these receptor solutions. Bovine serum albumin (BSA), 2-hydroxypropyl-beta-cyclodextrin (HPCD), ethanol, nonionic surfactant Brij-98, and propylene glycol were the additives, and phosphate buffered saline (PBS) was the control. Steady-state skin permeability coefficients and resistances were determined. The receptor solutions examined in this study did not cause a significant increase in skin permeability or decrease in resistance (less than 40 % changes) except 25 % ethanol. The receptor solution containing 25 % ethanol induced an approximately twofold average increase in skin permeability and reduced skin electrical resistance by approximately threefold. The receptor solution of 2.5 % HPCD provided the highest levels of solubility for the model lipophilic permeants, while 0.2 % Brij-98 and 5 % ethanol showed the lowest solubility enhancement from those in PBS.


Assuntos
Óleos de Plantas , Polietilenoglicóis , Absorção Cutânea , Pele , Administração Cutânea , Pele/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Permeabilidade , Etanol
11.
Int J Biol Macromol ; 257(Pt 2): 128629, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070795

RESUMO

At present, the main clinical methods of oral local anesthesia are direct injection of anesthetic and surface ointment. However, the pain and fear caused by the injection, the discomfort of topical anesthetic creams, and the scour and moist oral environment during the procedure pose great challenges to oral anesthesia. Herein, we designed a Lido-PVP/PVA DMNP microneedle (MN) for oral local anesthesia. The microneedle tip was consisted of Polyvinylpyrrolidone/Polyvinyl alcohol (PVP/PVA), which can quickly dissolve and release the lidocaine hydrochloride (Lido) drug within 5 min to achieve rapid anesthesia. The backing was composed of polyvinyl alcohol/chitosan (PVA/CS), and its excellent adhesion can overcome saliva erosion and anchor firmly to the oral mucosa, significantly improving the utilization rate of drugs, as well as the patient compliance. MNs have good mechanical properties for tissue insertion while possessing high drug loading (3 mg/MNs). Von Frey tests proved that MNs showed a faster and more effective local anesthetic effect (anesthesia takes effect at 5 min) compared to cream (anesthesia takes effect at 30 min). In addition, the excellent biocompatibility and no skin irritation endowed Lido-PVP/PVA DMNP MNs a great potential for oral local anesthesia in the oral cavity.


Assuntos
Quitosana , Álcool de Polivinil , Humanos , Anestesia Local , Anestésicos Locais , Lidocaína , Povidona
12.
J Biomater Sci Polym Ed ; 35(3): 364-396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982815

RESUMO

Natural products are generally preferred medications owing to their low toxicity and irritancy potential. However, a good number of herbal therapeutics (HT) exhibit solubility, permeability and stability issues that eventually affect oral bioavailability. Transdermal administration has been successful in resolving some of these issues which has lead in commercialization of a few herbal transdermal products. Polymeric Microneedles (MNs) has emerged as a promising platform in transdermal delivery of HT that face problems in permeating the skin. Several biocompatible and biodegradable polymers used in the fabrication of MNs have been discussed. MNs have been exploited for cutaneous delivery of HT in management of skin ailments like skin cancer, acne, chronic wounds and hypertrophic scar. Considering the clinical need, MNs are explored for systemic delivery of potent HT for management of diverse disorders like asthma, disorders of central nervous system and nicotine replacement as it obviates first pass metabolism and elicits a quicker onset of therapeutic response. MNs of HT have found good number of aesthetic applications in topical delivery of HT to the skin. Interestingly, MNs have emerged as an attractive option as a minimally invasive diagnostic aid in sampling biomarkers from plants, skin and ocular interstitial fluid. The review updates the progress made by MN technology of HT for multiple therapeutic interventions along with the future challenges. An attempt is made to illustrate the challenging formulation strategies employed in the fabrication of polymeric MNs of HT. Efforts are on to extend the potential applications of polymeric MNs to HT for diverse therapeutic applications.


Assuntos
Abandono do Hábito de Fumar , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Dispositivos para o Abandono do Uso de Tabaco , Pele , Polímeros/metabolismo
13.
AAPS PharmSciTech ; 24(8): 229, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964102

RESUMO

This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.


Assuntos
Solventes Eutéticos Profundos , Absorção Cutânea , Colchicina/metabolismo , Colchicina/farmacologia , Borracha/metabolismo , Borracha/farmacologia , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
14.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003437

RESUMO

Measurements of skin surface biomarkers have enormous value for the detailed assessment of skin conditions, both for clinical application and in skin care. The main goals of the current study were to assess whether expression patterns of skin surface hBD-1, hBD-2, IL-1α, CXCL-1, and CXCL-8, examples of proteins known to be involved in psoriasis pathology, are associated with disease severity and whether expression patterns of these proteins on the skin surface can be used to measure pharmacodynamic effects of biological therapy. In this observational study using transdermal analysis patch (TAP), levels of skin surface IL-1α, hBD-1, hBD-2, CXCL-1/2, and CXCL-8 of psoriasis vulgaris (PV) patients over biological therapy were assessed. The Psoriasis Area Severity Index (PASI) and local score for erythema, induration, and desquamation were determined from the exact same skin area as FibroTx TAP measurements. Thirty-seven adult PV patients were included, of which twenty-three were subjected to anti-TNF-α, seven to anti-IL-17A, and seven to anti-IL12/IL-23 therapy. Significantly higher levels of hBD-1, hBD-2, CXCL-1/2, and CXCL-8 were detected on lesional skin compared to the non-lesional skin of the PV patients. In contrast, lower levels of IL-1α were found in lesional skin compared to non-lesional skin. In addition, we observed that the biomarker expression levels correlate with disease severity. Further, we confirmed that changes in the expression levels of skin surface biomarkers during biological therapy correlate with treatment response. Biomarker expression patterns in response to treatment differed somewhat between treatment subtypes. We observed that, in the case of anti-TNF-α therapy, an increase after a steady decrease in the expression levels of CXCL-1/2 and CXCL-8 occurred before the change in clinical scores. Moreover, response kinetics of skin surface proteins differs between the applied therapies-hBD2 expression responds quickly to anti-IL-17A therapy, CXCL-1/2 to anti-IL-12/23, and levels of CXCL-8 are rapidly down-regulated by IL-17A and IL-12/23 therapy. Our findings confirm that the skin surface hBD-2, IL-1α, CXCL-1/2, and CXCL-8 are markers for the psoriasis severity. Further, data obtained during this study give the basis for the conclusion that skin surface proteins CXCL-1/2 and CXCL-8 may have value as therapeutic biomarkers, thus confirming that measuring the 'molecular root' of inflammation appears to have value in scoring disease severity on its own.


Assuntos
Proteínas de Membrana , Psoríase , Adulto , Humanos , Proteínas de Membrana/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Pele/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Terapia Biológica , Interleucina-12/metabolismo , Biomarcadores/metabolismo
15.
Mol Pharm ; 20(11): 5593-5606, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37755323

RESUMO

Photodynamic therapy (PDT) is a noninvasive therapeutic approach for the treatment of skin cancer and diseases. 5-Aminolevulinic acid is a prodrug clinically approved for PDT. Once internalized by cancer cells, it is rapidly metabolized to the photosensitizer protoporphyrin IX, which under the proper light irradiation, stimulates the deleterious reactive oxygen species (ROS) production and leads to cell death. The high hydrophilicity of 5-aminolevulinic acid limits its capability to cross the epidermis. Lipophilic derivatives of 5-aminolevulinic acid only partly improved skin penetration, thus making its incorporation into nanocarriers necessary. Here we have developed and characterized 5-aminolevulinic acid loaded invasomes made of egg lecithin, either 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine, and the terpene limonene. The obtained invasomes are highly thermostable and display a spherical morphology with an average size of 150 nm and an encapsulation efficiency of 80%; moreover, the ex vivo epidermis diffusion tests established that nanovesicles containing the terpene led to a much higher skin penetration (up to 80% in 3 h) compared to those without limonene and to the free fluorescent tracer (less than 50%). Finally, in vitro studies with 2D and 3D human cell models of melanoma proved the biocompatibility of invasomes, the enhanced intracellular transport of 5-aminolevulinic acid, its ability to generate ROS upon irradiation, and consequently, its antiproliferative effect. A simplified scaffold-based 3D skin model containing melanoma spheroids was also prepared. Considering the results obtained, we conclude that the lecithin invasomes loaded with 5-aminolevulinic acid have a good therapeutic potential and may represent an efficient tool that can be considered a valid alternative in the topical treatment of melanoma and other skin diseases.


Assuntos
Melanoma , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacologia , Lecitinas , Limoneno , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes , Melanoma/tratamento farmacológico , Fotoquimioterapia/métodos , Melanoma Maligno Cutâneo
16.
Int J Nanomedicine ; 18: 4617-4632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600118

RESUMO

Purpose: The aim of this study was to develop a liposome gel containing levo-tetrahydropalmatine (l-THP) and evaluate its transdermal properties. Methods: A L16 (43) orthogonal experiment was conducted to optimize the preparation of l-THP liposomes and assess their characterization and stability in a gel. The transdermal features were analyzed through in vivo and in vitro experiments on rats and Strat-M® membrane, respectively. The metabolism of l-THP in liver and skin S9 fractions was also studied. Results: The optimization of the orthogonal experiment revealed that the ideal mass ratio of phosphatidylcholine, cholesterol, and l-THP during preparation was 10:1:3. The resulting liposome exhibited a particle size of 68 nm, a PDI of 0.27, a drug loading of 4.33%, an encapsulation of 18.79%, and a zeta potential of -41.27 mV. Both the l-THP and its liposome-gel formulation were found to be stable for a duration of 45 days at 4 °C and 30 °C. During the in vivo transdermal study, the maximum concentration (Cmax) of l-THP from the liposome gel was 0.16 µg/mL, and the time to reach this maximum concentration (tmax) was 1.2 hours. The relative bioavailability of l-THP in the liposome gel was 233.8% compared to the emulsion. The concentration of l-THP (prepared in PBS) decreased at a rate of 0.0067 µg/mL/min in the liver S9 fraction and 0.0027 µg/mL/min in the skin S9 fraction, however, this difference was not observed when l-THP was encapsulated in liposomes. l-THP passed through the Strat-M® membrane at a rate of 0.0032 mg/cm2/h and 0.002 mg/cm2/h for the emulsion and liposome gel, respectively. Conclusion: The optimal process for the preparation of l-THP liposomes was obtained. Compared to the emulsion, the liposomes provided greater bioavailability when used transdermally. The liposomes also provided greater stability for l-THP during storage.


Assuntos
Lipossomos , Pele , Animais , Ratos , Emulsões , Lecitinas
17.
Drug Des Devel Ther ; 17: 2355-2368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588013

RESUMO

Purpose: In China, herbal preparation is commonly administered transdermally for treating pediatric diarrhea. However, few studies have probed into their antidiarrheal mechanisms. This study was designed to investigate the antidiarrheal effect of Renzhu ointment (Renzhuqigao, RZQG) and its underlying mechanisms via transdermal administration. Methods: The main components of RZQG were confirmed by gas chromatography-mass spectrometry (GC-MS). The effect of RZQG on L-type voltage-dependent calcium channel (L-VDCC) was evaluated by CaCl2- and ACh-induced contraction in isolated colon. The antidiarrheal efficacy of RZQG was further investigated by the senna-induced diarrhea mice based on the frequency of loose stools, diarrhea rate and index, fecal moisture content, and the basal tension of the colon. Additionally, the protein expression of CACNA1C, CACNA1D, cAMP, and PKA were detected with Western blot and immunohistochemistry (IHC). Results: GC-MS analysis determined 14 components in RZQG. In vitro, RZQG relaxed the CaCl2- and ACh-induced tension, while nifedipine (a L-VDCC inhibitor) and H-89 (a PKA inhibitor) decreased the relaxation. In vivo, animal model showed that transdermal administration of RZQG exhibited a significant reduction in the frequency of loose stools, diarrhea rate and index, fecal moisture content and the basal tension. Compared to the model group, the colon of mice treated with RZQG showed lower expression of CACNA1C, CACNA1D, cAMP, and PKA. IHC results showed that cAMP was downregulated in colonic smooth muscle after RZQG treatment. Conclusion: RZQG improved diarrhea symptoms and down-regulated the expression of CACNA1C and CACNA1D via transdermal administration, which is closely associated with the cAMP/PKA signaling pathway in colonic smooth muscle.


Assuntos
Antidiarreicos , Canais de Cálcio Tipo L , Animais , Camundongos , Administração Cutânea , Antidiarreicos/farmacologia , Cloreto de Cálcio , Pomadas , Senosídeos , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Fármacos Gastrointestinais , Modelos Animais de Doenças
18.
Biomed Pharmacother ; 166: 115316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572638

RESUMO

Melanoma is a highly aggressive form of skin cancer with limited therapeutic options. Chemo-photothermal combination therapy has demonstrated potential for effectively treating melanoma, and transdermal administration is considered the optimal route for treating skin diseases due to its ability to bypass first-pass metabolism and enhance drug concentration. However, the stratum corneum presents a formidable challenge as a significant barrier to drug penetration in transdermal drug delivery. Lipid-nanocarriers, particularly cubosomes, have been demonstrated to possess significant potential in augmenting drug permeation across the stratum corneum. Herein, cubosomes co-loaded with doxorubicin (DOX, a chemotherapeutic drug) and indocyanine green (ICG, a photothermal agent) (DOX-ICG-cubo) transdermal drug delivery system was developed to enhance the therapeutic efficiency of melanoma by improving drug permeation. The DOX-ICG-cubo showed high encapsulation efficiency of both DOX and ICG, and exhibited good stability under physiological conditions. In addition, the unique cubic structure of the DOX-ICG-cubo was confirmed through transmission electron microscopy (TEM) images, polarizing microscopy, and small angle X-ray scattering (SAXS). The DOX-ICG-cubo presented high photothermal conversion efficiency, as well as pH and thermo-responsive DOX release. Notably, the DOX-ICG-cubo exhibited enhanced drug permeation efficiency, good biocompatibility, and improved in vivo anti-melanoma efficacy through the synergistic effects of chemo-photothermal therapy. In conclusion, DOX-ICG-cubo presented a promising strategy for melanoma treatment.


Assuntos
Hipertermia Induzida , Melanoma , Nanopartículas , Humanos , Verde de Indocianina , Fototerapia/métodos , Terapia Fototérmica , Administração Cutânea , Espalhamento a Baixo Ângulo , Difração de Raios X , Doxorrubicina/farmacologia , Melanoma/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral
19.
Gels ; 9(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623051

RESUMO

Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.

20.
Int J Pharm ; 643: 123256, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482229

RESUMO

The transdermal drug delivery system (TDDS) is an effective strategy for the treatment of melanoma with fewer side effects and good biocompatible, but the skin penetration of drugs should be further promoted. Here, we proposed a new system that combined curcumin liposomes (Cur-Lips) with skin-penetrating peptides to promote skin penetration ability. However, the preparation of Cur-Lips has drawbacks of instability and low entrapment efficiency by the traditional methods. We thus innovatively designed and applied a microfluidic chip to optimize the preparation of Cur-Lips. Cur-Lips exhibited a particle size of 106.22 ± 4.94 nm with a low polydispersity index (<0.3) and high entrapment efficiency of 99.33 ± 1.05 %, which were prepared by the microfluidic chip. The Cur-Lips increased the skin penetration capability of Cur by 2.76 times compared to its solution in vitro skin penetration experiment. With the help of skin-penetrating peptide TD-1, the combined system further promoted the skin penetration capability by 4.48 times. The (TD-1 + Cur-Lips) system also exhibited a superior inhibition effect of the tumor to B16F10 in vitro. Furthermore, the topical application of (TD-1 + Cur-Lips) gel suppressed melanoma growth in vivo, and induced tumor cell apoptosis in tumor tissues. The skin-penetration promotion mechanism of the system was investigated. It was proved that the system could interact with the lipids and keratin on the stratum corneum to promote the Cur distribute into the stratum corneum through hair follicles and sweat glands. We proved that the microfluidic chips had unique advantages for the preparation of liposomes. The innovative combined system of liposomes and biological transdermal enhancers can effectively promote the skin penetration effect of drugs and have great potential for the prevention and treatment of melanoma.


Assuntos
Curcumina , Melanoma , Humanos , Lipossomos , Curcumina/farmacologia , Microfluídica , Inibidores de Ciclo-Oxigenase , Melanoma/tratamento farmacológico , Peptídeos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA