Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
2.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589452

RESUMO

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Assuntos
Aminopiridinas , Hipertermia Induzida , Indazóis , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro , Fatores de Transcrição de Choque Térmico/genética
3.
Anticancer Agents Med Chem ; 24(10): 789-797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482619

RESUMO

BACKGROUND: Despite remarkable advances, cancer has remained the second cause of death, which shows that more potent novel compounds should be found. Ethnobotanical compounds have a long history of treating diseases, and several approved chemotherapeutic compounds were isolated from plants. OBJECTIVE: The research aimed to evaluate the cytotoxic effects of Dorema hyrcanum root extract on ovarian, breast, and glioblastoma cells while examining its selectivity towards normal cells. Additionally, the study is directed to investigate cell death mechanisms, delineate modes of cell death, and explore intracellular ROS production. METHODS: Cytotoxic effects of alcoholic, dichloromethane, and petroleum ether fractions of Dorema hyrcanum were investigated on cancer and normal cells by using MTT assay, and the concentration around IC50 values was used for flow cytometric assessment of apoptosis, evaluation of the expression of selected genes via RT-qPCR and production of ROS. RESULTS: Methanolic extract exhibited the highest cytotoxicity, impacting A2780CP and MDA-MB-231. All fractions showed comparable effects on U251 cells. Notably, extracts displayed higher IC50 values in normal HDF cells, indicating cancer cell specificity. Flow cytometry revealed induction of apoptosis and non-apoptotic death in all three cancer cell lines. QPCR results showed upregulation of related genes, with RIP3K prominently increased in U251 glioblastoma. The DCFH-DA assay demonstrated ROS induction by the PE fraction exclusively in A2780CP cells after 30 minutes and up to 24 hours. CONCLUSION: Dorema hyrcanum root extracts exhibited potent anti-tumor effects against all studied cell lines. The methanolic extract demonstrated the highest cytotoxicity, particularly against A2780CP and MDA-MB-231 cells. Importantly, all fractions displayed selectivity for cancer cells over normal HDF cells. Unique modes of action were observed, with the petroleum ether fraction inducing significant non-apoptotic cell death. These findings suggest promising therapeutic potential for Dorema hyrcanum in cancer treatment with subject to further mechanistic studies.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma , Neoplasias Ovarianas , Extratos Vegetais , Raízes de Plantas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Apoptose/efeitos dos fármacos , Feminino , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Células Tumorais Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Heliyon ; 10(5): e27084, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444467

RESUMO

Triple-negative breast cancer (TNBC) is more prone to recurrence and metastasis relative to other subtypes of breast cancer, leading to an extremely poor prognosis. The increasing potential chemoresistance of TNBC patients is mainly due to that tumor cells escape from apoptosis. In recent years, statins have demonstrated extensive anti-tumor effects. It is worth noting that statins have more effective anti-tumor effects on TNBC cells and drug-resistant breast cancer cells. Therefore, this study examines the superior cytotoxic effects of statins on TNBC cell lines and further explores their potential therapeutic mechanisms. We detected different cell phenotypes and found that statins significantly reduced the cell viability of TNBC cells. Specifically, pitavastatin showed an obvious induction in cell death, cell cycle arrest and oxidative stress in TNBC MDA-MB-231 cells. The reversal effect of iron chelator desferrioxamine (DFO) on the morphological and molecular biological changes induced by pitavastatin has revealed a new mode of cell death induced by pitavastatin: ferroptosis. This ferroptotic effect was strengthened by the decreased expression of glutathione peroxidase 4 (GPx4) as well as newly discovered ferroptosis suppressor protein 1 (FSP1). The data showed that ferroptotic death of MDA-MB-231 cells is autophagy-dependent and mediated by the mevalonate pathway. Finally, we found that therapeutic oral doses of statins can inhibit the growth of transplanted tumors, which establishes statins as a potential treatment for TNBC patients. In conclusion, we found pitavastatin could induce autophagy-dependent ferroptosis in TNBC cells via the mevalonate pathway which may become a potential adjuvant treatment option for TNBC patients.

5.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Assuntos
Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno Ki-67/metabolismo , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinases Ciclina-Dependentes/uso terapêutico , Ciclofosfamida/farmacologia , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Transaminases , Glutamatos/farmacologia , Glutamatos/uso terapêutico , RNA Mensageiro
6.
Phytomedicine ; 126: 154894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377719

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. ß-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE: In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS: This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS: Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION: The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.


Assuntos
Naftoquinonas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína) , Proteômica , Proliferação de Células
7.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349045

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Assuntos
Chalconas , Sirtuína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Sirtuína 2/farmacologia , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/farmacologia , Tubulina (Proteína)/uso terapêutico , Proliferação de Células , Apoptose
8.
Cancer ; 130(10): 1747-1757, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236702

RESUMO

BACKGROUND: Patient-reported outcomes (PROs) are a better tool for evaluating the experiences of patients who have symptomatic, treatment-associated adverse events (AEs) compared with clinician-rated AEs. The authors present PROs assessing health-related quality of life (HRQoL) and treatment-related neurotoxicity for adjuvant capecitabine versus platinum on the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network (ECOG-ACRIN) EA1131 trial (ClinicalTrials.gov identifier NCT02445391). METHODS: Participants completed the National Comprehensive Cancer Network Functional Assessment of Cancer Therapy-Breast Cancer Symptom Index (NFBSI-16) and the Functional Assessment of Cancer Therapy-Gynecologic Oncology Group neurotoxicity subscale (platinum arm only) at baseline, cycle 3 day 1 (C3D1), 6 months, and 15 months. Because of early termination, power was insufficient to test the hypothesis that HRQoL, as assessed by the NFBSI-16 treatment side-effect (TSE) subscale, would be better at 6 and 15 months in the capecitabine arm; all analyses were exploratory. Means were compared by using t-tests or the Wilcoxon rank-sum test, and proportions were compared by using the χ2 test. RESULTS: Two hundred ninety-six of 330 eligible patients provided PROs. The mean NFBSI-16 TSE subscale score was lower for the platinum arm at baseline (p = .02; absolute difference, 0.6 points) and for the capecitabine arm at C3D1 (p = .04; absolute difference, 0.5 points), but it did not differ at other times. The mean change in TSE subscale scores differed between the arms from baseline to C3D1 (platinum arm, 0.15; capecitabine arm, -0.72; p = .03), but not from baseline to later time points. The mean decline in Functional Assessment of Cancer Therapy-Gynecologic Oncology Group neurotoxicity subscale scores exceeded the minimal meaningful change (1.38 points) from baseline to each subsequent time point (all p < .05). CONCLUSIONS: Despite the similar frequency of clinician-rated AEs, PROs identified greater on-treatment symptom burden with capecitabine and complemented clinician-rated AEs by characterizing patients' experiences during chemotherapy.


Assuntos
Capecitabina , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Capecitabina/uso terapêutico , Capecitabina/efeitos adversos , Quimioterapia Adjuvante/métodos , Neoplasia Residual , Platina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276623

RESUMO

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Oxigênio Singlete , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
10.
J Control Release ; 367: 425-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295998

RESUMO

Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.


Assuntos
Exossomos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , MicroRNAs/uso terapêutico , Brucea javanica , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Mamíferos/metabolismo , Microambiente Tumoral
11.
Mol Oncol ; 18(4): 1012-1030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217262

RESUMO

Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1ß and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.


Assuntos
Benzenossulfonamidas , Hipertermia Induzida , Melanoma , Pirazóis , Neoplasias de Mama Triplo Negativas , Humanos , Melanoma/tratamento farmacológico , Ciclo-Oxigenase 2 , Neoplasias de Mama Triplo Negativas/terapia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Microambiente Tumoral
12.
Nanomedicine (Lond) ; 19(1): 5-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179960

RESUMO

Aim: The present investigation aimed to develop a chemo-free, nanophytosomal system to treat triple-negative breast cancer (TNBC) via a phyto-photo dual treatment strategy. Method: Size, shape, surface analysis, photoprovoked release profile, photothermal stability, (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, apoptotic assay, DNA fragmentation, in vitro cellular uptake evaluation, mitochondrial membrane potential and caspase-3 assay, and photodynamic evaluation. Results: Biological experiments using MDA-MB-231 cells displayed dose-dependent synergistic anti-TNBC activity of PhytoS/Houttuynia cordata extract (HCE)/IR780 as compared with Phyto/HCE, PhytoS/IR780 and even more promising under laser treatment. Apoptotic assay and DNA fragmentation analysis also showed enhanced anti-TNBC effects. Investigation found that HCE acts via suppression of mitochondrial membrane potential and inducing caspase-3 activity in cells. Conclusion: Our findings suggested that photo-empowered phytotherapy can be employed effectively and safely against TNBC.


Assuntos
Dieldrin/análogos & derivados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Caspase 3 , Fitoterapia , Indóis , Linhagem Celular Tumoral
13.
Artigo em Chinês | WPRIM | ID: wpr-1018431

RESUMO

Objective To investigate the effects of Fuzheng Quxie Prescription(mainly with the actions of supporting healthy qi and dispelling pathogens)combined with neoadjuvant chemotherapy on tumor recurrence,serum thymidine kinase 1(TK1)level and immune function in patients with triple-negative breast cancer(TNBC).Methods Eighty patients with TNBC of qi and yin deficiency type were randomly divided into a combination group and a control group,with 40 patients in each group.The control group was treated with AC-T sequential chemotherapy(Doxorubicin combined with Cyclophosphamide plus sequential Docetaxel),and the combination group was treated with Fuzheng Quxie Prescription on the basis of treatment for the control group.One course of treatment covered 21 days,and the two groups were treated for 4 consecutive courses.The changes of traditional Chinese medicine(TCM)syndrome scores,Karnofsky Performance Status(KPS)score,levels of tumor markers of carbohydrate antigen 125(CA125),carbohydrate antigen 153(CA153)and TK1,and T lymphocyte subset levels in the two groups were observed before and after the treatment.Moreover,the clinical efficacy and tumor metastasis and recurrence in the two groups were compared.Results(1)After 4 courses of treatment,the total effective rate of the combination group was 87.50%(35/40),and that of the control group was 67.50%(27/40),and the intergroup comparison(tested by chi-square test)showed that the efficacy of the combination group was significantly superior to that of the control group(P<0.05).(2)After treatment,the TCM syndrome scores in the two groups were significantly decreased compared with those before treatment(P<0.05),and the KPS scores were significantly increased compared with those before treatment(P<0.05),and the decrease of TCM syndrome scores and the increase of KPS scores in the combination group were significantly superior to that in the control group(P<0.05 or P<0.01).(3)After treatment,the serum CA125,CA153 and TK1 levels of patients in the two groups were significantly decreased compared with those before treatment(P<0.05),and the decrease of serum CA125,CA153 and TK1 levels in the combination group was significantly superior to that in the control group(P<0.01).(4)After treatment,the T lymphocyte subset CD3+,CD4+ levels and CD4+/CD8+ ratio in the two groups were significantly increased compared with those before treatment(P<0.05),and the CD8+ level was significantly decreased compared with that before treatment(P<0.05).The post-treatment intergroup comparison showed that the increase of the T lymphocyte subset CD3+,CD4+ levels and CD4+/CD8+ ratio as well as the decrease of the CD8+ level in the combination group was all significantly superior to that in the control group(P<0.05 or P<0.01).(5)The one-year follow-up showed that the tumor recurrence rate and tumor metastasis rate in the combination group were 7.50%(3/40)and 12.50%(5/40)respectively,significantly lower than 25.00%(10/40)and 35.00%(14/40)in the control group,and the differences were statistically significant when comparing between the two groups(P<0.05).Conclusion The combination of neoadjuvant chemotherapy with Fuzheng Quxie Prescription has a better therapeutic effect on TNBC patients with qi and yin deficiency syndrome,which can effectively improve the immune function of the patients,decrease the level of serum tumor markers,improve the quality of life of the patients,and reduce the incidence of tumor recurrence and metastasis.

14.
Small ; : e2306766, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095479

RESUMO

Triple-negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC have limited therapeutic options, often resulting in poor prognosis. Some new treatments for TNBC have been considered in the past decade, such as immunotherapy, photothermal therapy (PTT), and ferroptosis therapy, that allow the rapid and minimally invasive ablation of cancer. However, a multifunctional nanodrug system with more potent efficacy for TNBC is still needed. The use of iron-based ternary chalcogenide nanoparticles (NPs), namely AgFeS2 , is reported, which synergistically combines photothermal therapy, ferrotherapy, and immunotherapy in one system for the treatment of TNBC. AgFeS2 possesses excellent photothermal conversion performance for tumor near-infrared (NIR) phototherapy. Upon photoirradiation, these NPs generate heat, accelerate the release of iron ions, and effectively catalyze the Fenton reaction, resulting in cell apoptosis and ferroptosis. Additionally, AgFeS2 promotes the release of tumor-specific antigens and triggers an immune response via immunogenic cell death (ICD), thereby providing unique synergistic mechanisms for cancer therapy. The present study demonstrates the great potential of iron-based ternary chalcogenide as a new therapeutic platform for a combination of photothermal therapy, ferrotherapy, and immunotherapy for the suppression of TNBC.

15.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067432

RESUMO

Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.


Assuntos
Diterpenos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases , Proliferação de Células , Linhagem Celular Tumoral , Diterpenos/farmacologia , Apoptose , Mamíferos
16.
Nanotechnology ; 35(11)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38081078

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and lacks effective therapeutic targets. The use of gambogic acid (GA), a class of active ingredients in traditional Chinese medicine with anti-tumour potential, is limited in tumour therapy owing to its drawbacks and unclear organ toxicity. In this study, we used the pH-responsive amphiphilic block copolymer, PEOz-PCL, to create nanodrugs for GA delivery to MDA-MB-231 cells. The pH-responsive GA-loaded micelles were prepared through nanoprecipitation with a more homogeneous size. The average particle size was 42.29 ± 1.74 nm, and the zeta potential value was 9.88 ± 0.17 mV. The encapsulation rate was 85.06%, and the drug loading rate was 10.63%. The process was reproducible, and sustained release reached 80% in 96 h at acid pH 5.0. Furthermore, cellular tests using CCK-8, TUNEL, and flow cytometry revealed that pH-responsive GA-loaded micelles killed MDA-MB-231 cells more effectively and had much higher activity and targeting compared with free drugs. Metabolomic analysis of the changes in differential metabolites revealed that pH-responsive GA-loaded micelles may inhibit TNBC cells by causing amino acid anabolism, nucleotide metabolism, and glucose metabolism, as well as by affecting their energy sources. The study outcomes will help understand the mechanism of action and the therapeutic efficacy of pH-responsive GA-loaded micellesin vivo.


Assuntos
Neoplasias de Mama Triplo Negativas , Xantonas , Humanos , Micelas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Xantonas/farmacologia , Xantonas/química , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
17.
Chin J Integr Med ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930511

RESUMO

OBJECTIVE: To investigate the therapeutic effect of Sanhuang Xiexin Decoction (SXD) on triple-negative breast cancer (TNBC) in mice and its underlying mechanism. METHODS: The high-performance liquid chromatography (HPLC) was used to quantitate and qualify SXD. A total of 15 female BALB/c mice were inoculated subcutaneously on the right hypogastrium with 3×105 of 4T1-Luc cells to establish TNBC mouse model. All mice were divided randomly into 3 groups, including phosphate buffered solution (PBS), SXD and doxorubicin (DOX) groups (positive drug). Additionally, tumor growth, pathological changes, serum lipid profiles, expression of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway and its key targets including inflammatory factors, cell cycle and epithelial-mesenchymal transition (EMT) markers were investigated. Besides, the biosafety of SXD was also evaluated in mice. RESULTS: Rhein, coptisine, berberine hydrochloride and baicalin were all found in SXD, and the concentrations of these 4 components were 0.57, 2.61, 2.93, and 46.04 mg/g, respectively. The mouse experiment showed that SXD could notably suppress the development of tumors and reduce the density of tumor cells (P<0.01). The serum lipid analysis and Oil-Red-O staining both showed the differences, SXD group exhibited higher serum adiponectin and HDL-C levels with lower TC and LDL-C levels compared to the PBS and DOX groups (P<0.05 or P<0.01), respectively. SXD also decreased the levels of phospho-JAK2 (p-JAK2), phospho-STAT3 (p-STAT3) expressions and its downstream factors, including mostly inflammatory cytokine, EMT markers, S phase of tumor cells and vascular endothelial growth factor (VEGF) expression (P<0.05 or P<0.01), respectively. The biosafety assessment of SXD revealed low levels of toxicity in mice. CONCLUSION: SXD could inhibit TNBC by suppressing JAK2-STAT3 phosphorylation which may be associated with modulation of lipid metabolism.

18.
J Chemother ; : 1-19, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936479

RESUMO

Caspases (cysteinyl aspartate-specific proteinases) are a group of structurally similar proteases in the cytoplasm that can be involved in cell differentiation, programmed death, proliferation, and inflammatory generation. Experts have found that caspase-3 can serve as a terminal splicing enzyme in apoptosis and participate in the mechanism by which cytotoxic drugs kill cancer cells. Breast cancer (BC) has become the most common cancer among women worldwide, posing a severe threat to their lives. Finding new therapeutic targets for BC is the primary task of contemporary physicians. Numerous studies have revealed the close association between caspase-3 expression and BC. Caspase-3 is essential in BC's occurrence, invasion, and metastasis. In addition, Caspase-3 exerts anticancer effects by regulating cell death mechanisms. Traditional Chinese medicine acting through caspase-3 expression is increasingly used in clinical treatment. This review summarizes the biological mechanism of caspase-3 and research progress on BC. It introduces a variety of traditional Chinese medicine related to caspase-3 to provide new ideas for the clinical treatment of BC.

19.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4981-4992, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802840

RESUMO

This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos Catiônicos Antimicrobianos , Imunoterapia/métodos , Linhagem Celular Tumoral , Fototerapia/métodos , Nanopartículas/química
20.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4483-4492, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802875

RESUMO

This study aims to investigate the effect and mechanism of hydnocarpin(HC) in treating triple negative breast cancer(TNBC). Cell counting kit-8(CCK-8), xCELLigence real-time cellular analysis(RTCA), and colony formation assay were employed to determine the effects of HC on the proliferation of two TNBC cell lines: MDA-MB-231 and MDA-MB-436. The effects of HC on the migration and invasion of TNBC cells were detected by high-content analysis, wound-healing assay, and Transwell assay. The changes in the epithelial-mesenchymal transition(EMT) and the expression of invasion-and migration-associated proteins [E-cadherin, vimentin, Snail, matrix metalloproteinase-2(MMP-2), and MMP-9] were detected by Western blot. Western blot and RT-qPCR were employed to determine the protein and mRNA levels of Yes-associated protein(YAP) and downstream targets(CTGF and Cyr61). TNBC cells were transfected with Flag-YAP for the overexpression of YAP, and the role of YAP as a key target for HC to inhibit TNBC malignant progression was examined by CCK-8 assay, Transwell assay, and wound-healing assay. The pathway of HC-induced YAP degradation was detected by the co-treatment of proteasome inhibitor with HC and ubiquitination assay. The binding of HC to YAP and the E3 ubiquitin ligase Ccr4-not transcription complex subunit 4(CNOT4) was detected by microscale thermophoresis(MST) assay and drug affinity responsive target stability(DARTS) assay. The results showed that HC significantly inhibited the proliferation, colony formation, invasion, and EMT of TNBC cells. HC down-regulated the protein and mRNA levels of CTGF and Cyr61. HC down-regulated the total protein level of YAP, while it had no effect on the mRNA level of YAP. The overexpression of YAP antagonized the inhibitory effects of HC on the proliferation, migration, and invasion of TNBC cells. HC promoted the degradation of YAP through the proteasome pathway and up-regulated the ubiquitination level of YAP. The results of MST and DARTS demonstrated direct binding between HC, YAP, and CNOT4. The above results indicated that HC inhibited the malignant progression of TNBC via CNOT4-mediated degradation and ubiquitination of YAP.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Ubiquitinação , RNA Mensageiro/metabolismo , Transição Epitelial-Mesenquimal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA