RESUMO
This study aims to investigate the component variations and spatial distribution of ginsenosides in Panax quinquefolium roots during repeated steaming and drying. Ultra performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to identify the ginsenosides in the root extract. Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) was employed to visualize the spatial distribution and spatiotemporal changes of prototype ginsenosides and metabolites in P. quinquefolium roots. The UPLC results showed that 90 ginsenosides were identified during the steaming process of the roots, and polar ginsenosides were converted into low polar or non-polar ginsenosides. The content of prototype ginsenosides decreased, while that of rare ginsenosides increased, which included 20(S/R)-ginsenoside Rg_3, 20(S/R)-ginsenoside Rh_2, and ginsenosides Rk_1, Rg_5, Rs_5, and Rs_4. MALDI-MSI results showed that ginsenosides were mainly distributed in the epidermis and phloem. As the steaming times increased, ginsenosides were transported to the xylem and medulla. This study provides fundamental information for revealing the changes of biological activity and pharmacological effect of P. quinquefolium roots that are caused by repeated steaming and drying and gives a reference for expanding the application scope of this herbal medicine.
Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/análise , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Panax/química , Cromatografia Líquida de Alta Pressão/métodos , Raízes de Plantas/químicaRESUMO
The rhizome of Polygonatum cyrtonema Hua has been used as a traditional Chinese medicine for over 2000 years. The fresh Chinese herb possesses micro toxicity and is thus traditionally alternately steamed and basked nine times to alleviate the toxicity and enhance the pharmaceutical efficacy. Different processing cycles usually result in variable therapeutic effects in the processed Polygonatum cyrtonema Hua (P-PCH). However, it can be hard to tell these various P-PCHs apart at present. To identify the P-PCHs that had undergone repeated steaming one to nine times, the chemical constituents were profiled based on Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry, and the Principal Component Analysis and Cluster Analysis methods were adopted to discriminate different cycles of P-PCH. A total of 44 characteristic markers were identified, which allowed the P-PCHs to be discriminated exactly.
Assuntos
Gastrópodes , Polygonatum , Animais , Análise por Conglomerados , Espectrometria de Massas , Vapor , Cromatografia LíquidaRESUMO
Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.
Assuntos
Fraxinus , Extratos Vegetais , Fraxinus/química , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Reprodutibilidade dos Testes , Extratos Vegetais/química , Modelos Lineares , Espectrometria de Massas/métodos , Limite de Detecção , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análiseRESUMO
Polygalae radix (PR) is a famous herbal medicine obtained by drying the root of Polygala tenuifolia Willd., one of the traditional Chinese medicines (TCM) that can be used for healthy food. There are three main processed methods of PR, including removing the xylem of roots (Polygalae Cortex, PC), frying PC with licorice (LP), and frying PC with honey (HP). While processing is believed to enhance efficacy and reduce toxicity, it is crucial to understand the differences in chemical composition and biological activities between crude and processed PR. This study used ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) combined with multivariate statistical analysis to analyze the chemical profiles and differences between the crude and processed products. Total polyphenol contents (TPC), total flavonoid contents (TFC), total saponin contents (TSC) and antioxidant activity of the processed and crude PR were also investigated. A total of 131 chemical compounds, including 42 saponins, 44 oligosaccharide esters, 25 xanthones, 2 organic acids, 3 Carbohydrates, and 15 components detected in auxiliary materials, were detected in all samples. Notably, PC exhibited significant changes among the three processed products, with the content of 62 compounds being higher. Processing of licorice (LP) and honey (HP) decreased the content of several compounds due to temperature and moisture influences. Comprehensive comparison of the antioxidant capacity of crude and processed PR showed that the antioxidant capacity of PC was higher than that of PR, HP, and LP. Our results can provide a scientific basis for further developing and applying P. tenuifolia resources.
RESUMO
BACKGROUND: Dendrobium officinale Kimura et Migo (DO), a valuable Chinese herbal medicine, has been reported to exhibit potential effects in the prevention and treatment of lung cancer. However, its material basis and mechanism of action have not been comprehensively analyzed. PURPOSE: The objective of this study was to preliminarily elucidate the active components and pharmacological mechanisms of DO in treating lung cancer, according to UPLC-Q/TOF-MS, HPAEC-PAD, network pharmacology, molecular docking, and experimental verification. METHODS: The chemical components of DO were identified via UPLC-Q/TOF-MS, while the monosaccharide composition of Dendrobium officinale polysaccharide (DOP) was determined by HPAEC-PAD. The prospective active constituents of DO as well as their respective targets were predicted in the combined database of Swiss ADME and Swiss Target Prediction. Relevant disease targets for lung cancer were searched in OMIM, TTD, and Genecards databases. Further, the active compounds and potential core targets of DO against lung cancer were found by the C-T-D network and the PPI network, respectively. The core targets were then subjected to enrichment analysis in the Metascape database. The main active compounds were molecularly docked to the core targets and visualized. Finally, the viability of A549 cells and the relative quantity of associated proteins within the major signaling pathway were detected. RESULTS: 249 ingredients were identified from DO, including 39 flavonoids, 39 bibenzyls, 50 organic acids, 8 phenanthrenes, 27 phenylpropanoids, 17 alkaloids, 17 amino acids and their derivatives, 7 monosaccharides, and 45 others. Here, 50 main active compounds with high degree values were attained through the C-T-D network, mainly consisting of bibenzyls and monosaccharides. Based on the PPI network analysis, 10 core targets were further predicted, including HSP90AA1, SRC, ESR1, CREBBP, MAPK3, AKT1, PIK3R1, PIK3CA, HIF1A, and HDAC1. The results of the enrichment analysis and molecular docking indicated a close association between the therapeutic mechanism of DO and the PI3K-Akt signaling pathway. It was confirmed that the bibenzyl extract and erianin could inhibit the multiplication of A549 cells in vitro. Furthermore, erianin was found to down-regulate the relative expressions of p-AKT and p-PI3K proteins within the PI3K-Akt signaling pathway. CONCLUSIONS: This study predicted that DO could treat lung cancer through various components, multiple targets, and diverse pathways. Bibenzyls from DO might exert anti-lung cancer activity by inhibiting cancer cell proliferation and modulating the PI3K-Akt signaling pathway. A fundamental reference for further studies and clinical therapy was given by the above data.
Assuntos
Bibenzilas , Dendrobium , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Fenol , Neoplasias Pulmonares/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt , Monossacarídeos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêuticoRESUMO
BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.
Assuntos
Medicamentos de Ervas Chinesas , Ligustrum , Osteoporose , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Osteoporose/tratamento farmacológico , Osteoblastos , Apoptose , Autofagia , Cloroquina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Cassia twig is a dry twig of Cinnamomum cassia Presl, a Lauraceae plant. Astragalus L is one of the largest genuses of flowering plants in the Leguminosae family. Roots of A. membranaceus Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge. Chinese herb couple refers to the matching of two herbs in pairs, mostly with synergistic effects or toxicity reduction. This Chinese herb couple (Cassia twig-Astragalus) come from the classic famous book "Zhang Xichun's book on Chinese herb couple", which is widely used to treat diabetes. Moreover, both Cassia twig and Astragalus belong to the homology of medicine and food. However, its mechanism is still unclear. The study identified the effective components of Cassia twig-Astragalus by UPLC-Q-TOF-MS/MS and investigated the mechanism of Cassia twig-Astragalus in treating diabetes by virtue of network pharmacology, molecular docking and experimental verification. Firstly, based on UPLC-Q-TOF-MS/MS and network pharmacology, a total of 10 active ingredients of Astragalus and 6 active ingredients of Cassia twig were screened, and a total of 13 key targets were obtained. There were 64 targets at the intersection of Cassia twig-Astragalus with diabetes, mainly including IL-17, TNF, NF-κß, AGE-RAGE signaling pathway, etc. It mainly involves the response of cells to insulin stimulation, the response to insulin and the positive regulation of cell adhesion. Secondly, molecular docking results showed that quercetin has good binding activities with AKT1 and TNF. Calycosin has good binding activities with AKT1, TNF and CAV1. Formononetin has good binding activities with TNF and IL-6. Isorhamnetin has good binding activities with AKT1, TNF and IL-6. Finally, the animal experiments showed that Cassia twig-Astragalus could improve the body weight, blood glucose and glucose tolerance in diabetic rats. After the intervention with Cassia twig-Astragalus, the inflammatory factors (IL-10, TNF-α, IL-6) were significantly improved in diabetic rats, which also effectively reduced TG and TC.Communicated by Ramaswamy H. Sarma.
RESUMO
Aurantii Fructus (AF) and Aurantii Fructus Immaturus (AFI) have been used for thousands of years as traditional Chinese medicine (TCM) with sedative effects. Modern studies have shown that Citrus plants also have protective effects on the nervous system. However, the effective substances and mechanisms of action in Citrus TCMs still remain unclear. In order to explore the pharmacodynamic profiles of identified substances and the action mechanism of these herbs, a comprehensive approach combining ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) analysis and network pharmacology was employed. Firstly, UNIFI 2.1.1 software was used to identify the chemical characteristics of AF and AFI. Secondly, the SwissTargetPrediction database was used to predict the targets of chemical components in AF and AFI. Targets for neuroprotection were also collected from GeneCards: The Human Gene Database (GeneCards-Human Genes|Gene Database|Gene Search). The networks between targets and compounds or diseases were then constructed using Cytoscape 3.9.1. Finally, the Annotation, Visualization and Integrated Discovery Database (DAVID) (DAVID Functional Annotation Bioinformatics Microarray Analysis) was used for GO and pathway enrichment analysis. The results showed that 50 of 188 compounds in AF and AFI may have neuroprotective biological activities. These activities are associated with the regulatory effects of related components on 146 important signaling pathways, derived from the KEGG (KEGG: Kyoto Encyclopedia of Genes and Genomes), such as neurodegeneration (hsa05022), the Alzheimer's disease pathway (hsa05010), the NF-kappa B signaling pathway (hsa04064), the hypoxia-inducible factor (HIF)-1 signaling pathway (hsa04066), apoptosis (hsa04210), the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance signaling pathway (hsa01521), and others, by targeting 108 proteins, including xanthine dehydrogenase (XDH), glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), and glucose-6-phosphate dehydrogenase (G6PD), among others. These targets are thought to be related to inflammation, neural function and cell growth.
RESUMO
Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS) was employed to examine the impact of Coptidis Rhizoma(CR) and its processed products on the metabolism in the rat model of oral ulcer due to excess heat and to compare the effectiveness of CR and its three products. Male SD rats were randomly allocated to the sham-operation(Sham), model(M, oral ulcer due to excess heat), CR, wine/Zingiberis Rhizoma Recens/Euodiae Fructus processed CR(wCR/zCR/eCR), and Huanglian Shangqing Tablets(HST) groups. Except the Sham group, the other groups were administrated with Codonopsis Radix-Astragali Radix decoction by gavage for two consecutive weeks. The anal temperature and water consumption of rats were monitored throughout the modeling period of excess heat. Following the completion of the modeling, oral ulcer was modeled with acetic acid. Hematoxylin-eosin(HE) staining was employed to observe the mucosal pathological changes in oral ulcer. A colorimetric assay was employed to determine the serum level of glutathione peroxidase(GSH-Px). Enzyme-linked immunosorbent assay(ELISA) was conducted to determine the levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), interleukin-1ß(IL-1ß), superoxide dismutase(SOD), and malondialdehyde(MDA) in the serum. The non-targeted metabolomics analysis based on UPLC-Q/TOF-MS was conducted on the serum samples. Metabolic profiles were then built, and the potential biomarkers were screened by principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA). The Mev software was used to establish a heat map and conduct cluster analysis on the quantitative results of the markers. The online databases including MBRole, KEGG, and MetaboAnalyst were used for pathway enrichment analysis and metabolic network building. The experimental results showed that the modeling led to pathological damage to the oral mucosa, elevated serum levels of TNF-α, IL-6, IL-1ß, and MDA, and lowered levels of SOD and GSH-Px in rats. The drug administration recovered all the indices to varying extents, and wCR exhibited the best performance. Non-targeted metabolomics identified 48 differential metabolites including 27 metabolites in the positive ion mode and 21 metabolites in the negative ion mode. Five enriched pathways were common, including glycerophospholipid metabolism, linoleic acid metabolism, and tyrosine metabolism. Conclusively, CR and its three processed products could alleviate the inflammation and oxidative stress injury in rats suffering from oral ulcers due to excess heat by regulating lipid and amino acid metabolism. Notably, wCR demonstrated the most significant therapeutic effect.
Assuntos
Medicamentos de Ervas Chinesas , Úlceras Orais , Ratos , Masculino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Úlceras Orais/tratamento farmacológico , Interleucina-6 , Temperatura Alta , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Superóxido Dismutase , BiomarcadoresRESUMO
This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type â ¡ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-â , DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.
Assuntos
Artrite Reumatoide , Morinda , Ratos , Animais , Glicosídeos Iridoides/química , Morinda/química , Cromatografia Líquida de Alta Pressão , Ácido Aspártico , Metabolômica , Artrite Reumatoide/tratamento farmacológico , Edema , Alanina/uso terapêutico , Glutamatos/uso terapêutico , BiomarcadoresRESUMO
This study aimed at investigating the mechanism of Trichosanthis Fructus-Allii Macrostemonis Bulbus(GX) in treating cardiovascular diseases in rats with the syndrome of combined phlegm and stasis. The rat model was established by a high-fat diet, ice-water bath combined with subcutaneous injection of adrenalin hydrochloride, and the syndrome score was determined. The serum samples of rats in the control, model, and GX groups were collected. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to analyze the metabolic profiles of the serum samples. The differential metabolites were screened and identified by partial least squares-discriminant analysis(PLS-DA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). The intervention targets of GX-regulated metabolites and their metabolic pathways were searched against MetaboAnalyst. Gene Ontology enrichment was carried out to predict the biological pathways associated with the intervention targets of metabolic pathways. A total of 129 potential biomarkers were detected in the rat model with the syndrome of combined phlegm and stasis via metabolomics, and GX regulated 54 metabolites in several metabolic pathways such as linoleic acid metabolism, sphingolipid metabolism, and tricarboxylic acid cycle. The further screening against MetaboAnalyst showed that GX recovered the levels of nine metabolites associated with cardiovascular diseases with the syndrome of combined phlegm and stasis, which involved 69 targets in the pathways regarding cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism. The above-mentioned results suggested that GX can alleviate the symptoms of the rat model of cardiovascular diseases with the syndrome of combined phlegm and stasis by regulating the metabolism of linoleic acid, sphingosine, docosahexaenoic acid, rosemary acid, succinic acid, adenine, L-phenylalanine, L-valine and modulating the biological pathways such as cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism.
Assuntos
Doenças Cardiovasculares , Cebolinha-Francesa , Medicamentos de Ervas Chinesas , Ratos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Ácido Linoleico , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Biomarcadores , Colesterol , GlucoseRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: For centuries, Shaoyao-Gancao-Fuzi decoction (SGFD) has been a reliable traditional Chinese medicine for treating rheumatoid arthritis (RA). Despite its long history of use, the specific active components and underlying mechanisms of its therapeutic effects have yet to be fully understood. AIM OF THE STUDY: The aim of this study was to investigate the active ingredients and therapeutic effects of SGFD on RA, and to further understand its underlying mechanism. MATERIALS AND METHODS: The chemical constituents in SGFD extract and in rat serum after oral administration of SGFD were identified and evaluated using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS) together with various data-processing methods, respectively. The efficacy of SGFD was assessed by using an adjuvant-induced arthritis (AIA) rat model and lipopolysaccharide-stimulated RAW 264.7 cell. Subsequently, cell metabolomic was conducted to clarify the potential biomarkers and pathways. ELISA, RT-qPCR, and WB were used to verify the anti-arthritis mechanism of SGFD. RESULTS: A total of 65 chemical constituents were identified in SGFD. 17 active components were distinguished in rat serum samples, of which 13 may be the main active ingredients for SGFD treatment of RA. The remarkable efficacy of SGFD in reducing the symptoms of RA is evident through its ability to alleviate the redness and swelling of the affected paws, as well as reduce the infiltration of inflammatory cells. Cell experiments revealed that rat serum of SGFD reduced IL-1ß, IL-6, and TNF-α secretion in RAW 264.7 cells. 27 potential biomarkers were identified through cell metabolomics analysis. The arachidonic acid (AA) metabolism signaling pathway was activated in RA, which could be reversed by rat serum of SGFD. SGFD effectively inhibited the expression and transformation of AA by downregulating the expression of key enzymes, including phospholipase A and cyclooxygenase. CONCLUSION: SGFD may ameliorate RA symptoms by regulating the AA-PGH2-PGE2/PGF2α pathway. The main active components include songorine, fuziline, neoline, albiflorin, paeoniflorin, liquiritin, benzoylmesaconine, isoformononetin, liquiritigenin, isoliquiritigenin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid.
Assuntos
Artrite Reumatoide , Diterpenos , Medicamentos de Ervas Chinesas , Glycyrrhiza , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , BiomarcadoresRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The reactive oxygen species (ROS) surge in the chronic wound tissue of diabetic ulcers (DUs) aggravates the inflammatory response. The oxidative stress state during inflammation will exacerbate inflammation and cause tissue damage, resulting in prolonged wound healing. Shengjihuayu Formula (SJHYF) is a renowned Chinese medicine prescription for treating chronic wounds in diabetic ulcers. Growing clinical evidence has demonstrated that SJHYF exhibits superior therapeutic efficacy and has a favorable safety profile. However, the underlying mechanisms by which SJHYF ameliorates oxidative damage under pathological conditions of DUs remain unclear. OBJECTIVE: To investigate the cytoprotective properties of SJHYF on hydrogen peroxide (H2O2)-induced cell damage in human HaCaT keratinocytes and to explore its potential targets and molecular pathways in treating DUs using RNA-seq. METHODS: HaCaT cells were incubated with H2O2 for 24 h to construct an oxidative stress cell model. Cell viability and proliferation were measured using the MTT and EdU assays, respectively. Cell migration was assessed using the scratch assay, and the fluorescence intensity of ROS was measured using the DCFH-DA probe. The chemical components of SJHYF were analyzed by UPLC-Q-TOF/MS, while the therapeutic effects of SJHYF on H2O2-induced HaCaT cells were analyzed using RNA-Seq. The potential target genes were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). At the same time, the pathway phenotype expression of SJHYF on the protection of H2O2-induced HaCaT cells was explored using Western Blot. RESULTS: The application of SJHY at a concentration of 0.25 mg/mL promoted cell proliferation, cell migration, and reduced ROS production. In addition, SJHYF was detected to have a total of 93 active compounds, including key components such as Galloyl-beta-D-glucose, Danshensu, Procyanidin B2, Catechin, and Alkannin. The RNA-seq analysis identified several core targets namely KRT17, TGM1, JUNB, PRDX5, TXNIP, PRDX1, HSP90AA1, HSP90AB1, HSPA8, and TNF-α. Western blot revealed the presence of the JNK/c-Jun/MMPs pathway and its related transcription factors. CONCLUSION: SJHYF displays significant protective effects on H2O2-induced oxidative cell damage in HaCaT cells via blocking the JNK/c-Jun/MMPs pathway.
Assuntos
Diabetes Mellitus , Glucose , Peróxido de Hidrogênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Úlcera , Estresse Oxidativo , Queratinócitos , Sistema de Sinalização das MAP Quinases , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , ApoptoseRESUMO
Metabolomics is a relatively novel omics tool to provide potential biomarkers for early diagnosis of the diseases and to insight the pathophysiology not having discussed ever before. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was employed to the plasma samples of Group T1: Patients with ectopic pregnancy diagnosed using ultrasound, and followed-up with beta-hCG level (n = 40), Group T2: Patients with ectopic pregnancy diagnosed using ultrasound, underwent surgical treatment and confirmed using histopathology (n = 40), Group P: Healthy pregnant women (n = 40) in the first prenatal visit of pregnancy, Group C: Healthy volunteers (n = 40) scheduling a routine gynecological examination. Metabolite extraction was performed using 3 kDa pores - Amicon® Ultra 0.5 mL Centrifugal Filters. A gradient elution program (mobile phase composition was water and acetonitrile consisting of 0.1% formic acid) was applied using a C18 column (Agilent Zorbax 1.8 µM, 100 x 2.1 mm). Total analysis time was 25 min when the flow rate was 0.2 mL/min. The raw data was processed through XCMS - R program language edition where the optimum parameters detected using Isotopologue Parameter Optimization (IPO). The potential metabolites were identified using MetaboAnalyst 5.0 and finally 27 metabolites were evaluated to be proposed as potential biomarkers to be used for the diagnosis of ectopic pregnancy.
Assuntos
Medicamentos de Ervas Chinesas , Gravidez Ectópica , Gravidez , Humanos , Feminino , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Metabolômica , Biomarcadores , Gravidez Ectópica/diagnóstico por imagemRESUMO
Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medicinal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction process, which is based on single-factor experiments and response surface methodology (RSM). Subsequently, eight macroporous resins of different properties were used to purify paeonol from MC. The main components of the purified extract were identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS). The results indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concentration 62%, ultrasonic time 31 min, ultrasonic temperature 36 °C, ultrasonic power 420 W. Under these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40% (purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic compounds and two principal monoterpene glycosides were characterized by comparison with reference compounds. These findings will make a contribution to the isolation and utilization of the active components from MC.
Assuntos
Acetofenonas , Medicamentos de Ervas Chinesas , Paeonia , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/químicaRESUMO
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA), a traditional Chinese medicine, is utilised for treating dermatitis, sore throat, dysuria, and cough. This research aimed to identify the main constituents in the four extracted portions from the calyces of PA (PAC) utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The Alzheimer's disease (AD) mice model was induced by D-galactose (D-gal) combined with aluminium chloride (AlCl3). Subsequent investigation into the underlying mechanisms involved behavioural and histopathological observations. The results demonstrated that four extracted portions of PAC (PACE) significantly enhanced memory and learning abilities in the Morris water maze. The concentrations of Aß, tau and p-tau in brain tissue exhibited a significant decrease relative to the model group. Moreover, the four PACE treatment groups increased the glutathione (GSH) and superoxide dismutase (SOD) levels, while concurrently reducing malondialdehyde (MDA), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels. In summary, the current study demonstrates that the four PACE formulations exhibit beneficial anti-AD properties, with the most pronounced efficacy observed in the EA group. Additionally, PAC shows potential in mitigating neuroinflammation and oxidative damage by inhibiting the TLR4/NF-κB signalling pathway. This research lays a theoretical groundwork for the future clinical development and utilisation of PAC in treating AD.
Assuntos
Doença de Alzheimer , Physalis , Camundongos , Animais , Physalis/química , Doença de Alzheimer/induzido quimicamente , Espectrometria de MassasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Shenling Baizhu San (SLBZS) is a formula of traditional Chinese medicine (TCM) that enhances the functions of the qi, spleen, and lung. According to the theory of TCM, chronic obstructive pulmonary disease (COPD) is often caused by lung qi deficiency, and SLBZS is often used in the treatment of COPD and has achieved remarkable results. However, the active components of SLBZS absorbed in serum and the underlying mechanism of SLBZS in treating COPD remain unclear and require further studies. AIM OF THE STUDY: The objective of this study is to investigate the active components of SLBZS in rat serum, as well as the crucial targets and signaling pathways involved in the therapeutic effects of SLBZS for COPD. MATERIALS AND METHODS: First, the absorption components and metabolites of SLBZS in rat serum were identified using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Second, potential targets of SLBZS for the treatment of COPD were acquired from publicly accessible online sources. Cytoscape (v3.7.0) software was used to construct a component-target-pathway network and a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential targets was performed using the Metascape database. The binding status of the active components in SLBZS to the potential targets was assessed with molecular docking technology. Finally, a cell model of COPD was successfully developed for experimental validation In vitro. RESULTS: A total of 108 active components were identified, including 30 prototype components and 78 metabolites. A total of 292 potential targets for the treatment of COPD were identified, including TNF, IL-6, TLR9, RELA, and others. The KEGG pathway included inflammatory mediator regulation of TRP channels, necroptosis, and the NF-κB signaling pathway, among others. The In vitro experiments showed that SLBZS-containing serum had the ability to decrease the levels of inflammatory factors and cell death. Additionally, it was observed that SLBZS-containing serum could control the expression levels of TLR9, MyD88, TRAF6, NF-κB, and IκBα at the mRNA and protein levels. These findings suggested that SLBZS-containing serum was likely to be involved in the regulation of the TLR9/NF-κB pathway. CONCLUSIONS: The mechanism of action of SLBZS on COPD was preliminarily elucidated using UPLC-Q-TOF-MS/MS, network pharmacology, and In vitro experiments. The primary active components and potential targets of SLBZS were identified, providing a scientific foundation for further research.
Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Animais , Ratos , Espectrometria de Massas em Tandem , Farmacologia em Rede , NF-kappa B , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Receptor Toll-Like 9 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológicoRESUMO
Curcumae Radix (i.e. Huangsiyujin: HSYJ), a well-known traditional Chinese medicine (TCM), has been widely used in clinical practice for many years to treat depression and primary dysmenorrhea. Modern pharmacological researches have demonstrated its anti-inflammatory, antidepressant, and dysmenorrhea relief effects. According to the processing theory of TCM, it is believed that stir-baked HSYJ with vinegar may enhance the ability to disperse stagnant hepatoqi and alleviate pain. However, whether the vinegar concoction of HSYJ can enhance the therapeutic effect on the Qi stagnation due to liver depression (LDQS) type of dysmenorrhea and what its mechanism has not been well explained. Based on the processing drugs theory of "stir-baked with vinegar into liver", a metabolomic approach was used to investigate the therapeutic effect and mechanism of stir-baked HSYJ with vinegar to enhance the treatment of dysmenorrhea in rats. By establishing a rat model of dysmenorrhea of the "LDQS" type, observation of hemorheology, uterine pathological sections, COX-2 and OTR protein expression and other indicators; analysis of urinary metabolic changes in rats by UPLC-Q-TOF-MS technique, to compare the differential biomarkers and metabolic pathways in the treatment of dysmenorrhea due to "liver stagnation and qi stagnation" before and after stir-baked HSYJ with vinegar. Stir-baked HSYJ with vinegar significantly inhibited the writhing response of rats, improved hemorheology, repaired damaged diseased uterus and inhibited high expression of COX-2 and OTR proteins in uterus; 68 differential metabolites were screened from the urine of rats, compared with the raw HSYJ, the levels of 14 metabolites were significantly changed in stir-baked HSYJ with vinegar, involving the pathways of phenylalanine, tyrosine and tryptophan metabolism, cysteine and methionine metabolism, aspartate and glutamate metabolism. The potentiating effect of stir-baked HSYJ with vinegar may be related to the regulation of multiple amino acid metabolic pathways.
Assuntos
Medicamentos de Ervas Chinesas , Humanos , Feminino , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Ácido Acético/química , Dismenorreia/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Ciclo-Oxigenase 2 , MetabolômicaRESUMO
Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.
Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma , Medicamentos de Ervas Chinesas/químicaRESUMO
Myrrh is widely used in clinical practice but accompanied by obvious toxicity. According to traditional Chinese medicines theory, processing with vinegar can effectively reduce its toxicity. However, the detoxification processing technology of Myrrh and the corresponding mechanism have been unclear. The objective of this study is to systematically analyze the variation in chemical composition of raw Myrrh and its processed products using UPLC-Q-TOF-MS/MS coupled with chemometrics. A total of 75 compounds including 56 sesquiterpenoids, 2 diterpenoids, 15 triterpenoids and 2 other types were identified. Raw Myrrh and its processed products were divided into two major groups, and 14 chemical markers were selected out by principal component analysis and partial least square discriminant analysis. Additionally, the exact content of 5 representative chemical markers was determined to be significantly reduced after vinegar-processing by UPLC-QQQ-MS/MS. Moreover, multivariate statistical analysis and the quantitative results comprehensively indicated that the optimized processing method was processing at a ratio of 200 : 5 (Myrrh:vinegar). This research provides not only a reliable foundation for the study of Myrrh, but also a scientific reference for clinical use of this herb.