Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5668, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454039

RESUMO

Vibrio parahaemolyticus is a gram-negative facultative anaerobic bacterium implicated as the causative agent of several shrimp diseases. As part of the effort to provide biocontrol and cost-effective treatments, this research was designed to elucidate the effect of Morinda citrifolia fruit extract on the immunity of Penaeus vannamei postlarvae (PL) to V. parahaemolyticus. The methanol extract of M. citrifolia was vacuum evaporated, and the bioactive compounds were detected using gas chromatography‒mass spectrometry (GC‒MS). Thereafter, P. vannamei PL diets were supplemented with M. citrifolia at different concentrations (0, 10, 20, 30, 40, and 50 mg/g) and administered for 30 days before 24 h of exposure to the bacterium V. parahaemolyticus. A total of 45 bioactive compounds were detected in the methanol extract of M. citrifolia, with cyclononasiloxane and octadecamethyl being the most abundant. The survival of P. vannamei PLs fed the extract supplement was better than that of the control group (7.1-26.7% survival greater than that of the control group) following V. parahaemolyticus infection. Shrimp fed 50 mg/g M. citrifolia had the highest recorded survival. The activities of digestive and antioxidant enzymes as well as hepatopancreatic cells were significantly reduced, except for those of lipase and hepatopancreatic E-cells, which increased following challenge with V. parahaemolyticus. Histological assessment of the hepatopancreas cells revealed reduced cell degeneration following the administration of the plant extracts (expecially those fed 50 mg/g M. citrifolia) compared to that in the control group. Therefore, the enhanced immunity against V. parahaemolyticus infection in P. vannamei could be associated with the improved hepatopancreas health associated with M. citrifolia fruit extract supplementation.


Assuntos
Morinda , Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Penaeidae/microbiologia , Composição de Bases , Frutas , Metanol/farmacologia , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Extratos Vegetais/farmacologia , Imunidade Inata
2.
Fish Physiol Biochem ; 49(1): 75-95, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502487

RESUMO

In this study, we evaluated to reveal the effects of aqueous methanolic extract of celery (Apium graveolens) on the growth performance, immune responses, and resistance against Vibrio anguillarum in European seabass (Dicentrarchus labrax). For this purpose, twenty fish (initial mean weight of 4.80 ± 0.06 g) were placed into twelve tanks (400 L) in triplicate and fish were fed with control (C) and three different levels (0.01, 0.05, and 0.1 g/kg) of A. graveolens (AG) extract-containing diets (AG0.01, AG0.05, and AG0.1) for 30 days. Blood and tissue (kidney, spleen, and intestine) samples were taken from the fish every 10 days during the study to determine the immune responses of the fish. Respiratory burst activity (RBA) was significantly decreased in the AG0.1 group compared to all other groups on the 10th day of the study (P < 0.05). Significance was noticed in the RBA of fish in all AG groups compared to the C group (P < 0.05) on the 30th day of the experiment Lysozyme activity (LYS) was raised on the 10th day of the study in all celery groups compared to the C group (P < 0.05). No differences in the myeloperoxidase activity (MPO) were observed among the experimental groups (P > 0.05). The final mean weight (FMW) was not affected in any experimental groups (P > 0.05). However, in the AG0.05 group, the specific growth rate (SGR) increased, and the feed conversion ratio (FCR) decreased compared to other groups (P < 0.05). IL-1ß in the kidney was highly elevated in the AG0.01 group on the 20th day of the study (P < 0.05). Similar results were observed on IL-6, IL-8, and TNF-α expression in the kidney (P < 0.05). Anti-inflammatory responses (IL-10 and TGF-ß) also increased in all experimental groups and tissues compared to the C group (P < 0.05). COX-2 was upregulated on the 20th day of the study in all tissues (P < 0.05). At the end of the feeding trial, the survival rate of the AG0.1 group in fish infected with Vibrio anguillarum infection was higher than the C group. Dietary celery extract did not affect growth performance directly but increased innate immune responses and a high survival rate. Overall, compared to the control group, the growth, immunity, and resistance of European seabass fed with a diet containing 0.05 g/kg celery aqueous methanolic extract has been improved, and this could be used as an immunostimulant feed additive.


Assuntos
Apium , Bass , Doenças dos Peixes , Vibrioses , Animais , Bass/fisiologia , Dieta/veterinária , Imunidade Inata , Vibrioses/veterinária , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/microbiologia , Resistência à Doença
3.
Biology (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36138767

RESUMO

Aquaculture has been expanding in Malaysia due to the increased demand for fish products. In addition, aquaculture faces challenges in maintaining feed suitability in support of the global growth of fish production. Therefore, improvements in diet formulation are necessary to achieve the optimal requirements and attain a desirable growth efficiency and health performance in fish. Seven weeks of study were conducted to compare the equal amounts of different fatty acids (2%) (oleic acid, stearic acid, palmitic acid, and behenic acid) on the survival, the growth, and the immune response of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) against V. vulnificus. After six weeks of the feeding trial, fish were challenged with V. vulnificus for 30 min before continuing on the same feeding regime for the next seven days (post-bacterial challenge). Fish supplemented with dietary oleic acid showed significantly (p < 0.05) enhanced immune responses, i.e., lysozyme, respiratory burst, and phagocytic activities compared to the control diet group for both pre-and post-bacterial challenges. Following the Vibrio challenge, no significant effects of supplemented fatty acid diets on survival rate were observed, although dietary oleic acid demonstrated the highest 63.3% survival rate compared to only 43.3% of the control diet group. In addition, there were no significant effects (p > 0.05) on specific growth rate (SGR), white blood cell (WBC), and red blood cell (RBC) counts among all experimental diets. The results from this study suggest that among the tested dietary fatty acids, the oleic acid diet showed promising results in the form of elevated immune responses and increased disease resistance of the hybrid grouper fingerlings challenged with V. vulnificus.

4.
3 Biotech ; 12(9): 206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935547

RESUMO

Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03269-1.

5.
J Proteomics ; 251: 104412, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34737109

RESUMO

The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.


Assuntos
Doenças dos Peixes , Vibrio , Animais , Doenças dos Peixes/microbiologia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Ferro/metabolismo , Estresse Oxidativo , Proteômica , Vibrio/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884815

RESUMO

BACKGROUND: New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS: Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS: An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 µM vs. 17 µM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 µM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 µM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 µM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS: RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Ferro/metabolismo , Citrato de Sódio/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Sinergismo Farmacológico , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Ligação Proteica , Vibrio parahaemolyticus/metabolismo , Ácido Rosmarínico
7.
Fish Shellfish Immunol ; 104: 633-639, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569712

RESUMO

Vibriosis disease is a major constraint for sustainable molluscan aquaculture. Development of strategies to enhance disease resistance during grow out would greatly reduce stock mortality and boost production yields. In this study, New Zealand black-footed abalone (Haliotis iris) were fed a commercial diet enhanced with multi-strain probiotics (Exiguobacterium JHEb1, Vibrio JH1 and Enterococcus JHLDc) for four months, then challenged with an injection of pathogenic Vibrio splendidus. Host immune responses in haemocytes were characterized using flow cytometry by measuring total haemocyte counts (THC) and viability, degree of apoptosis, and production of reactive oxygen species (ROS) 48 h post-challenge. Probiotic-fed abalone had significantly higher survival rates compared to control animals after the bacterial challenge. Infected probiotic-fed abalone also had significantly higher haemocyte viabilities, slightly lower proportions of haemocytes undergoing early apoptosis, and lower proportions of ROS-producing haemocytes compared to infected control-fed abalone. In addition, metabolite profiles of muscle tissues generated via gas chromatography-mass spectrometry (GC-MS) delivered complimentary evidence to support a perturbed ROS-regulatory system in infected abalone through changes in key metabolites associated with glutathione biosynthesis. The results of this study provide valuable information to assist in farm management practices, leading to enhance production and sustainability of the New Zealand abalone aquaculture industry.


Assuntos
Gastrópodes/imunologia , Imunidade Inata , Probióticos/metabolismo , Vibrio/fisiologia , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Nova Zelândia , Probióticos/administração & dosagem , Distribuição Aleatória
8.
Microb Pathog ; 135: 103633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326562

RESUMO

Vibrio harveyi causes severe loss to the aquaculture industry due to its virulence, which is mediated by Quorum sensing (QS) and biofilm formation. In the current study, we have explored the anti-virulent properties and biofilm disruption ability of luteolin (extracted from coconut shell) and linalool against this important aquaculture pathogen. HPLC analysis of the methanolic extract of coconut shells revealed a single major peak which matched to the standard luteolin which was further elucidated by NMR studies. Further, luteolin and linalool were screened for their ability to inhibit biofilms and various quorum sensing mediated virulence factors of V. harveyi. The Minimum Inhibitory Concentration (MIC) of the two compounds was determined and the sub-inhibitory concentrations of the compounds were able to inhibit biofilm formation. Both the compounds disrupted about 60-70% mature biofilms, which was also visually observed by light microscopy. Both linalool and luteolin exhibited a significant reduction in the production of EPS and alginate in the biofilms matrix of V. harveyi which was confirmed by Scanning Electron Microscopy (SEM). Both compounds inhibited the swarming and swimming motility, the crucial quorum sensing (QS) mediated virulence of V. harveyi. The present study shows the presence of valuable polyphenolic compound like luteolin in coconut shells that are discarded as a waste. From the present study we envisage that luteolin and linalool can serve as potent anti-virulent agents to combat QS mediated infections against aquaculture pathogens.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Alimentos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Vibrio/efeitos dos fármacos , Virulência/efeitos dos fármacos , Monoterpenos Acíclicos/isolamento & purificação , Monoterpenos Acíclicos/farmacologia , Alginatos/análise , Aquicultura , Sobrevivência Celular/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Luteolina/isolamento & purificação , Luteolina/farmacologia , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Vibrio/crescimento & desenvolvimento , Vibrioses , Fatores de Virulência
9.
Fish Shellfish Immunol ; 72: 348-355, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29127029

RESUMO

Many bacteria, including Vibrio pathogens of shrimp, need to colonize and/or form biofilms in hosts or the environment to cause disease. Thus, one possible control strategy for shrimp Vibriosis is biofilm inhibition. With this objective, an extract from the Japanese fermented soybean product, Natto was tested with the luminescent shrimp pathogen Vibrio harveyi (VH) for its ability to inhibit or degrade biofilm and to interfere with cell growth in broth. Natto is a traditional fermentation product of Bacillus subtilis var Natto (BSN1). Using 96 well microtiter plates coated with 0.4% chitosan, we found that biofilm formation by VH was inhibited, while growth in parallel broth cultures was not. When an extract from Natto prepared using BSN1 was mixed with feed for the whiteleg shrimp Penaeus vannamei before immersion challenge with V. harveyi at 106 cfu/ml, survival was significantly higher (p≤0.05) than for control shrimp given feed without these additives. Further work done to test whether d-amino acids were involved in biofilm formation as previously reported for B. subtilis, Staphylococus aureus and Pseudomonas aeruginosa gave negative results. In conclusion, we discovered that Natto extract can inhibit Vibrio biofilm formation and that it or BSN1 alone added to shrimp feed can significantly reduce shrimp mortality in immersion challenges with pathogenic VH. This shows some promise for possible application against Vibriosis in shrimp since Natto is generally regarded as safe (GRAS) for human consumption.


Assuntos
Anti-Infecciosos/farmacologia , Bacillus subtilis/fisiologia , Biofilmes/efeitos dos fármacos , Penaeidae/imunologia , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Animais , Extratos Vegetais/farmacologia , Alimentos de Soja/análise
10.
Microb Pathog ; 110: 232-239, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28687321

RESUMO

Vibrio harveyi is a potent biofilm former, which confers resistance to multiple antimicrobials, disinfectants, chemicals and biocides. The prevalence of biofilm mediated antibiotic resistance among aquatic bacterial pathogens stresses the search for novel alternative approach to treat vibriosis in aquaculture. Exploring suitable therapeutics from natural resources could be a novel area of research. Therefore, this work was executed to evaluate the inhibitory effect of Piper betle ethyl acetate extract (PBE) on bioluminescence production and biofilm formation of V. harveyi. Minimal inhibitory concentration (MIC) of PBE against planktonic V. harveyi was found to be 1600 µg ml-1; furthermore, PBE inhibited the quorum sensing (QS) mediated bioluminescence production and biofilm formation in V. harveyi upto 98 and 74% respectively, at its sub-MIC concentration of 400 µg ml-1 without affecting their cell viability. Similar results were obtained for exopolysaccharides production and swimming motility related to biofilm formation of V. harveyi, where PBE reduced EPS production upto 64%. Light and confocal laser scanning microscopic analyses further confirmed that the PBE effectively prevented the initial attachment as well as microcolonies formation of V. harveyi biofilm, when compared to their untreated controls. This study demonstrates the promising antibiofilm activity of PBE and confirms the ethnopharmacological potential of this plant against V. harveyi infections.


Assuntos
Biofilmes/efeitos dos fármacos , Piper betle/química , Extratos Vegetais/farmacologia , Percepção de Quorum/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Aquicultura , Sobrevivência Celular/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Proteínas Luminescentes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polissacarídeos/metabolismo , Vibrio/citologia , Vibrioses
11.
Dev Comp Immunol ; 46(2): 470-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950414

RESUMO

The cytoprotective role of heat shock protein (Hsp70) described in a variety of animal disease models, including vibriosis in farmed aquatic animals, suggests that new protective strategies relying upon the use of compounds that selectively turn on Hsp genes could be developed. The product Tex-OE® (hereafter referred to as Hspi), an extract from the skin of the prickly pear fruit, Opuntia ficus indica, was previously shown to trigger Hsp70 synthesis in a non-stressful situation in a variety of animals, including in a gnotobiotically (germ-free) cultured brine shrimp Artemia franciscana model system. This model system offers great potential for carrying out high-throughput, live-animal screens of compounds that have health benefit effects. By using this model system, we aimed to disclose the underlying cause behind the induction of Hsp70 by Hspi in the shrimp host, and to determine whether the product affects the shrimp in inducing resistance towards pathogenic vibrios. We provide unequivocal evidences indicating that during the pretreatment period with Hspi, there is an initial release of reactive oxygen species (hydrogen peroxide and/or superoxide anion), generated by the added product, in the rearing water and associated with the host. The reactive molecules generated are the triggering factors responsible for causing Hsp70 induction within Artemia. We have also shown that Hspi acts prophylactically at an optimum dose regimen to confer protection against pathogenic vibrios. This salutary effect was associated with upregulation of two important immune genes, prophenoloxidase and transglutaminase of the innate immune system. These findings suggest that inducers of stress protein (e.g. Hsp70) are potentially important modulator of immune responses and might be exploited to confer protection to cultured shrimp against Vibrio infection.


Assuntos
Artemia/metabolismo , Proteínas de Artrópodes/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Vibrio/imunologia , Animais , Artemia/imunologia , Artemia/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Choque Térmico HSP70/genética , Interações Hospedeiro-Patógeno , Imunidade Inata , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Extratos Vegetais/farmacologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA