RESUMO
Little is known about disease transmission relevant contact rates at the wildlife-livestock interface and the factors shaping them. Indirect contact via shared resources is thought to be important but remains unquantified in most systems, making it challenging to evaluate the impact of livestock management practices on contact networks. Free-ranging wild pigs (Sus scrofa) in North America are an invasive, socially-structured species with an expanding distribution that pose a threat to livestock health given their potential to transmit numerous livestock diseases, such as pseudorabies, brucellosis, trichinellosis, and echinococcosis, among many others. Our objective in this study was to quantify the spatial variations in direct and indirect contact rates among wild pigs and cattle on a commercial cow-calf operation in Florida, USA. Using GPS data from 20 wild pigs and 11 cattle and a continuous-time movement model, we extracted three types of spatial contacts between wild pigs and cattle, including direct contact, indirect contact in the pastoral environment (unknown naturally occurring resources), and indirect contact via anthropogenic cattle resources (feed supplements and water supply troughs). We examined the effects of sex, spatial proximity, and cattle supplement availability on contact rates at the species level and characterized wild pig usage of cattle supplements. Our results suggested daily pig-cattle direct contacts occurred only occasionally, while a significant number of pig-cattle indirect contacts occurred via natural resources distributed heterogeneously across the landscape. At cattle supplements, more indirect contacts occurred at liquid molasses than water troughs or molasses-mineral block tubs due to higher visitation rates by wild pigs. Our results can be directly used for parameterizing epidemiological models to inform risk assessment and optimal control strategies for controlling transmission of shared diseases.
Assuntos
Animais Selvagens , Doenças dos Bovinos , Gado , Animais , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Gerenciamento Clínico , Equinococose/epidemiologia , Equinococose/veterinária , Feminino , Pseudorraiva/epidemiologia , Análise Espacial , Sus scrofa , Triquinelose/epidemiologia , Triquinelose/veterináriaRESUMO
In Southwest Alberta, beef cattle and wild elk (Cervus elaphus) have similar habitat preferences. Understanding their inter-species contact structure is important for assessing the risk of pathogen transmission between them. These spatio-temporal patterns of interactions are shaped, in part, by range management and environmental factors affecting elk distribution. In this study, resource selection modeling was used to identify factors influencing elk presence on cattle pasture and elk selection of foraging patches; furthermore, consequences for inter-species disease transmission were discussed. Data on pasture management practices and observations of elk were collected from 15 ranchers during interviews. Pasture use by elk was defined based on telemetry data (from GPS collars deployed on 168 elk in 7 herds) and rancher observations. At the patch scale, foraging patches used by elk were identified by spatio-temporal cluster analysis of telemetry data, whereas available patches were randomly generated outside the area delimited by used patches. For pastures and patches, landscape and human-managed features were characterized using remote sensing data and interviews, respectively. Attributes of available and used pastures (or patches) were compared using resource selection functions, on annual and seasonal (or annual and monthly) time scales. Additionally, intensity of pasture use was modeled using negative binomial regression. Cultivated hay land and mineral supplements were associated with elk presence on cattle pastures, whereas pastures with manure fertilization and higher traffic-weighted road densities were less likely to be used by elk. The effects of landscape (elevation, aspect, water access) and vegetation (forest cover, Normalized Difference Vegetation Index) characteristics on patch selection were consistent with typical elk habitat requirements. The presence of cattle and the traffic-weighted road density were negatively associated with patch selection. The apparent avoidance of cattle by elk reduced the risk of direct transmission of pathogens, except during winter months. However, human-managed features attracting elk to cattle pastures (e.g. hay land and mineral supplements) may increase inter-species pathogen transmission through indirect contacts.