Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412620

RESUMO

Two mesenchymal zinc transporters, ZIP7 and ZIP13, play critical roles in dermal development. ZIP7 and ZIP13 are the closest among the conserved mammalian zinc transporters. However, whether their functions are complementary remains a controversial issue. In the present study, we found that the expression of ZIP13, but not ZIP7, is elevated by transforming growth factor beta (TGF-ß) treatment, indicating that TGF-ß-mediated ZIP13 amplification is crucial for collagen production during dermal development. Genome-wide gene expression analysis revealed that ~26% of genes are dependent on either ZIP7 or ZIP13, which is greater than the ~17% of genes dependent on both of them. ZIP7 depletion induces endoplasmic reticulum (ER) stress in mesenchymal stem cells, resulting in significant inhibition of fibrogenic differentiation. However, ZIP13 depletion does not induce ER stress. Though both ZIP7 and ZIP13 contain traditional ER signal peptides for their intracellular localization, their distributions are distinct. When ZIP7 and ZIP13 are coexpressed, their localizations are distinct; ZIP7 is located on the ER, but ZIP13 is located on both the ER and Golgi, indicating that only ZIP13 is a zinc gatekeeper on the Golgi. Our data illustrate that the different actions of ZIP7 and ZIP13 are crucial for dermal development.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Derme/embriologia , Derme/metabolismo , Organogênese/genética , Zinco/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Genoma , Estudo de Associação Genômica Ampla , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos
2.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415457

RESUMO

Zinc deficiency is a risk factor for obesity and diabetes. However, until recently, the underlying molecular mechanisms remained unclear. The breakthrough discovery that the common polymorphism in zinc transporter SLC30A8/ZnT8 may increase susceptibility to type 2 diabetes provided novel insights into the role of zinc in diabetes. Our group and others showed that altered ZnT8 function may be involved in the pathogenesis of type 2 diabetes, indicating that the precise control of zinc homeostasis is crucial for maintaining health and preventing various diseases, including lifestyle-associated diseases. Recently, the role of the zinc transporter ZIP13 in the regulation of beige adipocyte biogenesis was clarified, which indicated zinc homeostasis regulation as a possible therapeutic target for obesity and metabolic syndrome. Here we review advances in the role of zinc homeostasis in the pathophysiology of diabetes, and propose that inadequate zinc distribution may affect the onset of diabetes and metabolic diseases by regulating various critical biological events.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Obesidade/etiologia , Obesidade/metabolismo , Zinco/metabolismo , Adipócitos/metabolismo , Animais , Transporte Biológico , Suplementos Nutricionais , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo
3.
J Vet Med Sci ; 79(9): 1563-1568, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28781296

RESUMO

Ehlers-Danlos syndrome (EDS) is a group of disorders caused by abnormalities in the extracellular matrix (ECM). Transforming growth factor-ß (TGF-ß) plays a crucial role in formation of the ECM by the SMAD (Sma-and Mad-related protein, mothers against decapentaplegic homolog) pathway. It has been reported that loss of function of zinc transporter ZRT/IRT-like protein 13 (ZIP13) is the cause of the spondylocheiro dysplastic form of EDS (SCD-EDS: OMIM 612350). Our previous study suggested that TGF-ß1 has a relationship with the skin pathological condition in the Zip13-Knockout (KO) mouse, which is a model of SCD-EDS. Thus far, effective treatment based on modern medicine for this syndrome has not yet been established. According to an approach of traditional Chinese medicine, the present study investigates the medicinal effects of Makomo (Zizania latifolia) on certain aspects of SCD-EDS, such as skin morphology and plasma TGF-ß1, in Zip13-KO mice. Increases in densities of collagen fibers and fibrils without a significant change in thickness of the dermal layer were observed in the group of mice fed a Makomo-containing diet. No change in the amount of collagen suggests that Makomo feed does not elevate collagen synthesis, but changes the length of glycosaminoglycan chains and decreases the distance between collagen fibrils. In conclusion, the changes of the skin structure suggest that Makomo can increase the mechanical strength of skin.


Assuntos
Ração Animal , Proteínas de Transporte de Cátions/metabolismo , Dieta , Poaceae , Pele/patologia , Animais , Proteínas de Transporte de Cátions/genética , Colágeno/metabolismo , Síndrome de Ehlers-Danlos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA