Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947639

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF. Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals, cardiac function was assessed by echocardiography at baseline and throughout the experiment. At the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected for assessment of mitochondrial function and for histological and molecular analyses. Leucine had already improved diastolic function after 4 weeks of treatment. This was accompanied by improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data show that leucine supplementation improves diastolic function and decreases remodeling processes in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-ß1/Collagenase downregulation and indicate a potential use in the treatment of HFpEF.


Assuntos
Insuficiência Cardíaca , Ratos , Feminino , Animais , Insuficiência Cardíaca/metabolismo , Leucina/farmacologia , Volume Sistólico/fisiologia , Obesidade/complicações , Suplementos Nutricionais , Histona Desacetilases
2.
ESC Heart Fail ; 9(6): 4348-4351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36043453

RESUMO

AIM: Heart failure with preserved ejection fraction (HFpEF) is associated with left ventricular stiffness, impaired diastolic relaxation, and severe exercise intolerance. Decreased homoarginine (hArg) levels are an independent predictor of mortality in cardiovascular disease and correlate with impaired exercise performance. We recently reported alterations in arginine, hArg, and related amino acids in obese ZSF1 rats (O-ZSF1), with a HFpEF phenotype. Although low hArg is associated with diastolic dysfunction in humans, potential effects of hArg supplementation were not tested yet. METHODS AND RESULTS: At an age of 6 weeks, 12 O-ZSF1 were randomized into two groups: (1) O-ZSF1 rats supplemented with hArg in their drinking water (sO-ZSF1) or (2) O-ZSF1 rats receiving no hArg supplementation (O-ZSF1). At an age of 32 weeks, effects of primary prevention by hArg supplementation on echocardiographic, histological, and functional parameters of heart and skeletal muscle were determined. Lean ZSF1 rats (L-ZSF1) served as controls. hArg supplementation did not prevent impairment of diastolic relaxation (E/e': O-ZSF1 21 ± 3 vs. sO-ZSF1 22 ± 3, P = 0.954, L-ZSF1 18 ± 5) but resulted in more cardiac fibrosis (histological collagen staining: +57% in sO-ZSF1 vs. O-ZSF1, P = 0.027) and increased collagen gene expression (Col1a1: +48% in sO-ZSF1 vs. O-ZSF1, P = 0.026). In contrary, right ventricular function was preserved by hArg supplementation (TAPSE (mm): O-ZSF1 1.2 ± 0.3 vs. sO-ZSF1 1.7 ± 0.3, P = 0.020, L-ZSF1 1.8 ± 0.4). Musculus soleus maximal specific muscle force (N/cm2 ) in O-ZSF1 (30.4 ± 0.8) and sO-ZSF1 (31.9 ± 0.9) was comparable but significantly reduced compared with L-ZSF1 (36.4 ± 0.7; both P < 0.05). Maximal absolute muscle force (g) (O-ZSF1: 177.6 ± 7.8, sO-ZSF1: 187.8 ± 5.0, L-ZSF1: 181.5 ± 7.9, all P > 0.05) and cross-sectional fibre area (arbitrary units) (O-ZSF1: 1697 ± 57, sO-ZSF1: 1965 ± 121, L-ZSF1: 1691 ± 104, all P > 0.05) were not altered. CONCLUSIONS: Preservation of physiological hArg level in HFpEF may not be suited to prevent alterations in left ventricular and skeletal muscle function and structure. However, hArg supplementation may be beneficial for right ventricular function especially in pulmonary hypertension in HFpEF. We may speculate that clinically observed decreased hArg level are not the cause but the consequence of a yet unrecognized pathomechanism that underpins HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Ratos , Animais , Lactente , Insuficiência Cardíaca/etiologia , Volume Sistólico/fisiologia , Homoarginina , Estudos Transversais , Músculo Esquelético/metabolismo , Colágeno , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA