Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 38(6): 2669-2686, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500263

RESUMO

In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.


Assuntos
Curcumina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neurogênese , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Alicerces Teciduais , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Curcumina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Neurogênese/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Recuperação de Função Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Nanopartículas/química , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Soroalbumina Bovina/química
2.
Cells Tissues Organs ; 204(5-6): 270-282, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131080

RESUMO

To date, a completely in vitro repopulated tissue-engineered heart valve has not been developed. This study focused on sequentially seeding 2 cell populations onto porcine decellularized heart valve leaflets (HVL) and pericardia (PER) to obtain fully repopulated tissues. For repopulation of the interstitium, porcine valvular interstitial cells (VIC) and bone marrow-derived mesenchymal stem cells (BM-MSC) or adipose tissue-derived stem cells (ADSC) were used. In parallel, the culture medium was supplemented with ascorbic acid 2-phosphate (AA) and its effect on recolonization was investigated. Subsequently and in order to obtain an endothelial surface layer similar to those in native HVL, valvular endothelial cells (VEC) were seeded onto the scaffolds. It was shown that VIC efficiently recolonized HVL and partially also PER. On the other hand, stem cells only demonstrated limited or no subsurface cell infiltration of HVL and PER. Interestingly, the addition of AA increased the migratory capacity of both stem cell populations. However, this was more pronounced for BM-MSC, and recolonization of HVL appeared to be more efficient than that of PER tissue. VEC were demonstrated to generate a new endothelial layer on HVL and PER. However, scanning microscopy revealed that these endothelial cells were not allowed to fully spread onto PER. This study provided a proof of concept for the future generation of a bioactive tissue-engineered heart valve by showing that bioactive HVL could be generated in vitro within 14 days via complete repopulation of the interstitium with BM-MSC or VIC and subsequent generation of an entirely new endothelium.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Valvas Cardíacas/citologia , Pericárdio/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/citologia , Animais , Células Cultivadas , Células Endoteliais/citologia , Valvas Cardíacas/química , Células-Tronco Mesenquimais/citologia , Pericárdio/química , Células-Tronco/citologia , Suínos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA