Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621973

RESUMO

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Assuntos
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Melhoramento Vegetal , Artemisininas/análise , Aldeídos
2.
Heliyon ; 10(7): e27972, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596057

RESUMO

Artemisinin, a traditional Chinese medicine with remarkable antimalarial activity. In recent years, studies demonstrated that artemisinin and its derivatives (ARTs) showed anti-inflammatory and immunoregulatory effects. ARTs have been developed and gradually applied to treat autoimmune and inflammatory diseases. However, their role in the treament of patients with autoimmune and inflammatory diseases in particular is less well recognized. This review will briefly describe the history of ARTs use in patients with autoimmune and inflammatory diseases, the theorized mechanisms of action of the agents ARTs, their efficacy in patients with autoinmmune and inflammatory diseases. Overall, ARTs have numerous beneficial effects in patients with autoimmune and inflammatory diseases, and have a good safety profile.

3.
ACS Sens ; 9(3): 1458-1464, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446423

RESUMO

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Assuntos
Artemisininas , Malária Falciparum , Ácidos Nucleicos Peptídicos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , RNA
4.
Heliyon ; 10(5): e26388, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439855

RESUMO

The Artemisia genus belongs to the Asteraceae family and is used in the treatment of many different diseases such as hepatitis and cancer. So far, around 500 species of Artemisia have been found in different regions of the world. Artemisinin is one of the medicinal compounds found in Artemisia species. Hence, this medical feature encourages researchers to pay attention to various species of this genus to discover more genetic and phytochemical information. In the present study, five species of Artemisia including A. fragrans, A. annua, A. biennis, A. scoparia, and A. absinthium were compared to each other in terms of the artemisinin content and other phytochemical components. Moreover, the relative expression profiles of eight genes related to the accumulation and synthesis of artemisinin [including 4FPSF, DBR2, HMGR1, HMGR2, WIRKY, ADS, DXS, and SQS] were determined in investigated species. The result of high-performance liquid chromatography (HPLC) analysis showed that the content of artemisinin in various species was in the order of A. fragrans > A. annua > A. biennis > A. scoparia > A. absinthium. Based on the gas chromatography-mass spectrometry (GC-MS) analysis, 34, 26, 26, 24, and 20 phytochemical compounds were identified for A. scoparia, A. biennis, A. fragrans, A. absinthum, and A. annua species, respectively. Moreover, camphor (38.86%), ß-thujone (68.42%), spathulenol (48.33%), ß-farnesene (48.16%), and camphor (29.04%) were identified as the considerable compounds A. fragrans, A. absinthium, A. scoparia, A. biennis, and A. annua species, respectively. Considering the relative expression of the targeted genes, A. scoparia revealed higher expression for the 4FPSF gene. The highest relative expression of the DBR2, WIRKY, and SQS genes was found in A. absinthium species. Moreover, A. annua showed the highest expression of the ADS and DXS genes than the other species. In conclusion, our findings revealed that various species of Artemisia have interesting breeding potential for further investigation of different aspects such as medicinal properties and molecular studies.

5.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413638

RESUMO

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Assuntos
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospecção , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
6.
Microbiol Spectr ; 12(4): e0350023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363132

RESUMO

During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Artemisininas/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos , Proteínas de Protozoários/genética
7.
Front Pharmacol ; 15: 1303123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379899

RESUMO

Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.

8.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329581

RESUMO

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Fertilizantes , Perfilação da Expressão Gênica , Lagos , Fósforo
9.
Am J Chin Med ; 52(1): 161-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328829

RESUMO

Ferroptosis, an iron-dependent cell death mechanism driven by an accumulation of lipid peroxides on cellular membranes, has emerged as a promising strategy to treat various diseases, including cancer. Ferroptosis inducers not only exhibit cytotoxic effects on multiple cancer cells, including drug-resistant cancer variants, but also hold potential as adjuncts to enhance the efficacy of other anti-cancer therapies, such as immunotherapy. In addition to synthetic inducers, natural compounds, such as artemisinin, can be considered ferroptosis inducers. Artemisinin, extracted from Artemisia annua L., is a poorly water-soluble antimalarial drug. For clinical applications, researchers have synthesized various water-soluble artemisinin derivatives such as dihydroartemisinin, artesunate, and artemether. Artemisinin and artemisinin derivatives (ARTEs) upregulate intracellular free iron levels and promote the accumulation of intracellular lipid peroxides to induce cancer cell ferroptosis, alleviating cancer development and resulting in strong anti-cancer effects in vitro and in vivo. In this review, we introduce the mechanisms of ferroptosis, summarize the research on ARTEs-induced ferroptosis in cancer cells, and discuss the clinical research progress and current challenges of ARTEs in anti-cancer treatment. This review deepens the current understanding of the relationship between ARTEs and ferroptosis and provides a theoretical basis for the clinical anti-cancer application of ARTEs in the future.


Assuntos
Artemisininas , Ferroptose , Neoplasias , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Ferro , Peróxidos Lipídicos , Neoplasias/tratamento farmacológico , Água
10.
Plant Commun ; 5(3): 100742, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37919898

RESUMO

We investigated the effects of graphene on the model herb Artemisia annua, which is renowned for producing artemisinin, a widely used pharmacological compound. Seedling growth and biomass were promoted when A. annua was cultivated with low concentrations of graphene, an effect which was attributed to a 1.4-fold increase in nitrogen uptake, a 15%-22% increase in chlorophyll fluorescence, and greater abundance of carbon cycling-related bacteria. Exposure to 10 or 20 mg/L graphene resulted in a âˆ¼60% increase in H2O2, and graphene could act as a catalyst accelerator, leading to a 9-fold increase in catalase (CAT) activity in vitro and thereby maintaining reactive oxygen species (ROS) homeostasis. Importantly, graphene exposure led to an 80% increase in the density of glandular secreting trichomes (GSTs), in which artemisinin is biosynthesized and stored. This contributed to a 5% increase in artemisinin content in mature leaves. Interestingly, expression of miR828 was reduced by both graphene and H2O2 treatments, resulting in induction of its target gene AaMYB17, a positive regulator of GST initiation. Subsequent molecular and genetic assays showed that graphene-induced H2O2 inhibits micro-RNA (miRNA) biogenesis through Dicers and regulates the miR828-AaMYB17 module, thus affecting GST density. Our results suggest that graphene may contribute to yield improvement in A. annua via dynamic physiological processes together with miRNA regulation, and it may thus represent a new cultivation strategy for increasing yield capacity through nanobiotechnology.


Assuntos
Artemisia annua , Artemisininas , Grafite , MicroRNAs , Fenômenos Fisiológicos , Plantas Medicinais , Artemisia annua/genética , Artemisia annua/metabolismo , Grafite/metabolismo , Grafite/farmacologia , Peróxido de Hidrogênio/metabolismo , Plantas Medicinais/genética , Artemisininas/metabolismo , Artemisininas/farmacologia
11.
Colloids Surf B Biointerfaces ; 234: 113660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042107

RESUMO

The occurrence of multidrug-resistant bacteria necessitates the development of new antibacterial agents. This study synthesized artemisinin-zinc nanoparticles (AZ NPs) using a simple green method and investigated their physicochemical properties, antibacterial activity, and oral biological activity. A spherical shape morphology of AZ NPs was observed by scanning and transmission electron microscopy, with a particle size of 73 ± 2.604 nm. Energy dispersive spectrometry analysis showed that the AZ NPs consisted mainly of Zn, C, N, and O elements. According to differential scanning calorimeter analysis, the AZ NPs were stable up to 450 °C. Fourier-transform infrared spectroscopy revealed that artemisinin successfully bound to zinc acetate. The AZ NPs showed antibacterial activity against Salmonella and Escherichia coli, with a minimum inhibitory concentration of 0.056 mg/mL for both and minimum bactericidal concentrations of 0.21 and 0.11 mg/mL, respectively. The mechanisms by which AZ NPs mediate membrane damage were revealed by the downregulation of gene expression, and potassium ion and protein leakage. In vivo safety trials of these drugs revealed low toxicity. After AZ NPs were administered to infected mice, the intestinal bacteria decreased significantly, liver and kidney function were restored, histopathological damage to the liver and spleen were reduced, and the expression of inflammatory cytokines decreased. Therefore, AZ NPs have the potential as an oral antibacterial agent and can be used in antibiotic development and in the pharmaceutical industry.


Assuntos
Artemisininas , Nanopartículas Metálicas , Animais , Camundongos , Zinco , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química , Artemisininas/farmacologia , Testes de Sensibilidade Microbiana
12.
J Ethnopharmacol ; 322: 117612, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135228

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY: In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS: Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS: Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS: A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.


Assuntos
Antimaláricos , Artemisia annua , Artemisininas , Sesquiterpenos , Ratos , Camundongos , Animais , Antimaláricos/química , Artemisia annua/química , Artemisininas/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química
13.
BMC Biol ; 21(1): 279, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049852

RESUMO

BACKGROUND: The rapid reproduction of malaria parasites requires proper iron uptake. However, the process of iron absorption by parasites is rarely studied. Divalent metal transporter (DMT1) is a critical iron transporter responsible for uptaking iron. A homolog of human DMT1 exists in the malaria parasite genome, which in Plasmodium yoelii is hereafter named PyDMT1. RESULTS: PyDMT1 knockout appears to be lethal. Surprisingly, despite dwelling in an iron-rich environment, the parasite cannot afford to lose even partial expression of PyDMT1; PyDMT1 hypomorphs were associated with severe growth defects and quick loss of pathogenicity. Iron supplementation could completely suppress the defect of the PyDMT1 hypomorph during in vitro culturing. Genetic manipulation through host ferritin (Fth1) knockout to increase intracellular iron levels enforced significant growth inhibition in vivo on the normal parasites but not the mutant. In vitro culturing with isolated ferritin knockout mouse erythrocytes completely rescued PyDMT1-hypomorph parasites. CONCLUSION: A critical iron requirement of malaria parasites at the blood stage as mediated by this newly identified iron importer PyDMT1, and the iron homeostasis in malarial parasites is finely tuned. Tipping the iron balance between the parasite and host will efficiently kill the pathogenicity of the parasite. Lastly, PyDMT1 hypomorph parasites were less sensitive to the action of artemisinin.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Humanos , Ferro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Eritrócitos/parasitologia
14.
Parasitol Res ; 123(1): 71, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38148378

RESUMO

The objective of this work was to evaluate the effect of the ethyl acetate extract from A. ludoviciana (EALM) and artemisinin against adult parasites and eggs of F. hepatica. For the ovicidal assay, cell culture plates with 24 wells were used, and 90 to 110 F. hepatica eggs were placed in each well. The eggs were exposed to concentrations of 100, 200, 300, 400, and 500 mg/L EALM and incubated for 16 days. Additionally, triclabendazole (TCBZ) was used as a reference drug at concentrations of 10 and 50 mg, and the response of artemisinin at concentrations of 10 and 20 mg was simultaneously assessed. Adult flukes were exposed to concentrations of 125, 250, 375, and 500 mg/L EALM. The results of the ovicidal action of EALM on the eggs showed that concentrations greater than 300 mg/L were significant, with ovicidal percentages greater than 60% observed on day 16 of incubation (p < 0.05). The maximum efficiency of EALM on adult flukes was reached 72 h post-exposure at a concentration of 125 mg/L (p < 0.05).


Assuntos
Anti-Helmínticos , Artemisia , Artemisininas , Fasciola hepatica , Fasciolíase , Parasitos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Fasciolíase/parasitologia , Resistência a Medicamentos
15.
Parasit Vectors ; 16(1): 421, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974285

RESUMO

BACKGROUND: The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS: We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS: We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS: These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Animais , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Ferro/uso terapêutico
16.
Nanomedicine (Lond) ; 18(23): 1681-1696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37955573

RESUMO

The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.


Plants hide an incredible treasure chest of beneficial substances within them. These natural substances have a wide range of beneficial applications for human health, from nutrition to personal care, including the treatment of diseases such as malaria. However, to exploit the full potential of these substances, an innovative approach is needed, and nanomedicine promises that. Nanomedicine involves the use of nanosystems, incredibly small systems, invisible to the naked eye, but their impact is enormous. Thus, bioactive compounds in plants that may have beneficial effects on human health can be placed within these nanosystems to improve their effectiveness. This synergy between nature and nanotechnology offers new opportunities to improve health and well-being, demonstrating how valuable science and technology are in exploring the natural world. After examining the key advantages of nanosystems, this review focuses on some of the earliest antimalarials used and then looks at newer and more promising ones, starting with quinine, extracted from Cinchona bark; moving to the discovery of artemisinin, obtained from Artemisia annua and its derivatives; and ending with an analysis of alternative natural molecules with antimalarial activity. This review examines how nanomedicine can make natural plant-based treatments more effective in fighting malaria. This could help reduce the impact of malaria in many places around the world.


Assuntos
Malária , Nanomedicina , Humanos , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Malária/tratamento farmacológico
17.
Curr Top Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711006

RESUMO

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

18.
Front Immunol ; 14: 1198902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529040

RESUMO

Introduction: Artemisinin (ART) is very common as a diet additive due to its immunoregulatory activities. Nonetheless, the immunoregulatory mechanism of ART in marine fish remains unknown. This study comprehensively examined the effects and explored the potential mechanism of ART ameliorating intestinal immune disease (IID) in fat greenlings (Hexagrammos otakii). Methods and results: The targets of ART were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Here, eight putative targets of ART were collected and identified with the Uniprot database, and 1419 IID-associated target proteins were filtered through the Drugbank, Genecards, OMIM, and PHARMGKB Databases. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways point out that ART may have immunoprotective effects by regulating cellular responses to stress, hypoxia, inflammation, and vascular endothelial growth factor stimulus through the hypoxia-inducible factor 1 (HIF-1) signaling pathway. The findings of molecular docking indicated that ART contains one active ingredient and three cross-targets, which showed a kind combination with hypoxia-inducible factor 1-alpha (HIF1-a), transcription factor p65 (RELA), and vascular endothelial growth factor A (VEGF-A), respectively. Furthermore, an ART feeding model was established to assess the ART's immunoprotect effect on the intestine of H.otakii in vivo. The D48 group showed smaller intestinal structural changes after being challenged by Edwardsiella tarda. The supplementation of ART to the diet improved total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the malondialdehyde (MDA) in intestine of H. otakii. The expression of transcription factor p65, HIF1-α, VEGF-A, cyclin D1, matrix metalloprotease 9 (MMP9), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) was decreased after dietary ART in the intestinal of H. otakii. Discussion: The present results demonstrated that dietary ART improved antioxidants and immunity, optimized the intestinal structure, and increased resistance to E. tarda through the SOD2/nuclear-factor-kappa- B (NFkB)/HIF1-a/VEGF-A pathway in the intestinal tract of H.otakii. This study integrated pharmacological analysis and experimental validation and revealed the mechanism of ART on IID, which provides insight into the improvement of IID in H. otakii.


Assuntos
Artemisininas , Perciformes , Animais , Fator A de Crescimento do Endotélio Vascular , Fator de Transcrição RelA , Simulação de Acoplamento Molecular , Suplementos Nutricionais , Dieta , Intestinos , Artemisininas/farmacologia
19.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446786

RESUMO

Curcumin and artemisinin are commonly used in traditional East Asian medicine. In this study, we investigated the inhibitory effects of these active compounds on xanthine oxidase (XO) using allopurinol as a control. XO was purified from the serum of arthritis patients through ammonium sulfate precipitation (65%) and ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose. The specific activity of the purified enzyme was 32.5 U/mg protein, resulting in a 7-fold purification with a yield of 66.8%. Molecular docking analysis revealed that curcumin had the strongest interaction energy with XO, with a binding energy of -9.28 kcal/mol. The amino acid residues Thr1077, Gln762, Phe914, Ala1078, Val1011, Glu1194, and Ala1079 were located closer to the binding site of curcumin than artemisinin, which had a binding energy of -7.2 kcal/mol. In vitro inhibition assays were performed using nanocurcumin and artemisinin at concentrations of 5, 10, 15, 20, and 25 µg/mL. Curcumin inhibited enzyme activity by 67-91%, while artemisinin had a lower inhibition ratio, which ranged from 40-70% compared to allopurinol as a control.


Assuntos
Artemisininas , Artrite , Curcumina , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/sangue , Curcumina/química , Curcumina/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Humanos , Artrite/sangue , Artrite/enzimologia , Simulação de Acoplamento Molecular , Alopurinol/química , Alopurinol/farmacologia , Ligação Proteica
20.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513343

RESUMO

Malaria remains a life-threatening health problem and is responsible for the high rates of mortality and morbidity in the tropical and subtropical regions of the world. The increasing threat of drug resistance to available artemisinin-based therapy warrants an urgent need to develop new antimalarial drugs that are safer, more effective, and have a novel mode of action. Natural plants are an excellent source of inspiration in searching for a new antimalarial agent. This research reports a systematic investigation for determining the antimalarial potential of the seeds of A. squamosa. The study shows that the crude seed extract (CSE), protein, saponin, and the oily fractions of the seeds were nontoxic at a 2000 mg/kg body weight dose when tested in Wistar rats, thus revealing high safety is classified as class 5. The oily fraction, Annomaal, demonstrated pronounced antimalarial activity with low IC50 (1.25 ± 0.183 µg/mL) against P. falciparum in vitro. The CSE and Annomaal significantly inhibited the growth of P. berghei parasites in vivo with 58.47% and 61.11% chemo suppression, respectively, while the standard drug artemether showed chemo suppression of 66.75%. Furthermore, the study demonstrated that oral administration of Annomaal at a daily dose of 250 mg/kg/day for 3 days was adequate to provide a complete cure to the P. berghei-infected mice. Annomaal thus holds promise as being patient-compliant due to the shorter treatment schedule, eliminating the need for frequent dosing for extended time periods as required by several synthetic antimalarial drugs. Further studies are needed to determine the active compounds in the oily fraction responsible for antimalarial activity.


Assuntos
Annona , Antimaláricos , Malária Falciparum , Ratos , Animais , Camundongos , Antimaláricos/farmacologia , Plasmodium falciparum , Plasmodium berghei , Extratos Vegetais/farmacologia , Ratos Wistar , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA