Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.388
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Cureus ; 16(3): e56300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38629020

RESUMO

Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested.  Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.

2.
Environ Anal Health Toxicol ; 39(1): e2024004-0, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38631396

RESUMO

Decalobanthus peltatus is a woody vine that is commonly utilized in traditional Southeast Asian medicinal preparations. Despite the documented therapeutic uses of D. peltatus, there is hardly any information regarding its toxic effects on its consumers. In this study, crude leaf extracts (aqueous, methanol, ethyl acetate, and hexane) from D. peltatus were prepared and evaluated for their embryotoxicity and teratogenic effects. Phytochemical screening of bioactive compounds from the plants showed the presence of alkaloids, flavonoids, saponins, steroids, and tannins. In addition, investigations on the toxicity of the crude leaf extracts were determined using brine shrimp lethality assay, in which the LC50 was calculated. Results showed that the ethyl acetate leaf extract was the most toxic among the crude leaf extracts, with an LC50 of 14.54 ppm. Based on this result, ethyl acetate leaf extract was treated on duck embryos, and the alteration of vascular branching patterns in the chorioallantoic membrane was quantified. Gross morphological and histological analysis of the skin tissues from the treated duck embryos were also examined. We found significant reduction of primary and tertiary vessel diameters in the duck embryos treated with ethyl acetate leaf extracts in both concentrations compared to the control group. Treated duck embryos exhibited gross malformations, growth retardation, and hemorrhages on the external body surfaces at 1000 ppm. Histopathological analysis of the skin tissues from the 14-day-old treated duck embryos showed a reduced number of feather follicles compared to the control group. These results suggest that D. peltatus crude leaf extracts present risks when taken in significant dosages and comprehensive toxicity testing on therapeutic herbs should be performed to ensure their safety on the consumers.

3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612589

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Assuntos
Ácidos Graxos Ômega-3 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adulto , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Adutos de DNA , Carcinogênese , Transformação Celular Neoplásica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia
4.
Cell Biochem Funct ; 42(3): e4007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593323

RESUMO

Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5'-triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost-effective, and high-throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.


Assuntos
Sobrevivência Celular , Morte Celular , Avaliação Pré-Clínica de Medicamentos
5.
Cureus ; 16(3): e55686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586786

RESUMO

Background Terminalia bellirica leaf extract was used as an herbal to get an aqueous extract of Tb-ZnO-TiO2 (zinc and titanium dioxide) nanoparticles composite, and this was subsequently subjected to an analysis of its antioxidant properties and possible antimicrobial activity against gram-negative and gram-positive bacteria. Employing the 2,2-Diphenyl-1-picrylhydrazyl and hydrogen peroxide assay techniques for antioxidant properties. In addition to their biocompatibility, rapid biodegradability, and low toxicity, herbal-based nanoparticles (Tb-ZnO-TiO2 NPs composite) synthesized by T. bellirica have drawn a lot of interest as promising options for administering drugs and effective antimicrobial applications. Materials and methods The form and dimensions of the dispersion of the synthesized nanoparticles were investigated through scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy, and UV-visible for particle characterization. Nanoparticles were analyzed for antimicrobial activity using the well diffusion method. Ascorbic acid and vitamin E were used as two separate controls for antioxidant assay with different concentrations, and also toxicity assay was done by using zebrafish embryos. Results Tb-ZnO-TiO2 NPs composite were obtained as a powder, the X-beam diffraction (XRD) result revealed a small quantity of impurities and revealed that the structure was spherical in nature. A unique absorption peak for Tb-ZnO-TiO2 NPs composite may be seen in UV-Vis spectroscopy which is in the region of 260 to 320 nm. The Tb-ZnO-TiO2 NPs composite antibacterial efficacy was evaluated and showed noted antibacterial activity and free radical scavenging activity with less toxicity. Conclusion The results demonstrated the Tb-ZnO-TiO2 NPs composite has strong antioxidant qualities and enormous antibacterial activity obtained from T. bellirica extract. Therefore, the Tb-ZnO-TiO2 NPs composite synthesized nanoparticles can be used in biomedical applications as an effective antioxidant and antibacterial reagent.

6.
Vet Q ; 44(1): 1-10, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557294

RESUMO

Research on the effects of selenium nanoparticles (Se-NPs), particularly in Japanese quails, is lacking, especially regarding the potential for DNA damage. Therefore, this study aimed to investigate the impact of administering 0.2 and 0.4 mg/kg of Se-NPs on the growth performance, DNA integrity, and histopathological alterations of the liver, lung, kidney, and heart in quails. A total of 480 one-day-old Japanese quails were divided into three experimental groups as follows: Group 1 served as the control and received only basic feed, while Group 2 and 3 received 0.2 mg/kg and 0.4 mg/kg of Se-NPs via oral gavage. Our results suggested that, birds fed with Se-NPs at both levels significantly (p < .01) reduced feed intake, however, weight gain was significantly (p < .01) increased in quails supplemented with 0.2 mg/kg. Similarly, feed conversion ratio (FCR) was significantly (p < .01) reduced in group supplemented with 0.2 mg/kg Se-NPs. White blood cells increased significantly (P0.01) in 0.4 mg/kg while haemoglobin and red cell distribution width decreased (p < .01) in the same group. Both treatment regimens resulted in DNA damage and histopathological alterations; however, the adverse effects were more prominent in the group receiving the higher dose of 0.4 mg/kg. These findings indicate that the lower dose of 0.2 mg/kg may have beneficial effects on growth. However, the higher dose of 0.4 mg/kg not only negatively impacts growth but also leads to histopathological alterations in major organs of the body and DNA damage as well.


Assuntos
Coturnix , Selênio , Animais , Selênio/toxicidade , Suplementos Nutricionais , Aumento de Peso , Dano ao DNA , Ração Animal/análise , Dieta/veterinária
7.
Cureus ; 16(2): e54994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38550426

RESUMO

Background The exploration of green synthesis for silver nanoparticles using diverse plant sources has gained significant attention. This study specifically investigates the use of Ocimum tenuiflorum and Ocimum gratissimum, known for their antibacterial properties, in synthesizing silver nanoparticles. The primary aim of this study is to evaluate the antimicrobial efficacy of silver nanoparticles synthesized using a herbal formulation composed of Ocimum tenuiflorum and Ocimum gratissimum against different oral pathogens. Materials and methods The process involved the combination of herbal extracts from Ocimum tenuiflorum and Ocimum gratissimum with a silver nitrate solution leading to the synthesis of silver nanoparticles. The formation of silver nanoparticles was confirmed by ultraviolet and visible absorption spectroscopy. The obtained silver nanoparticles were used to study their antimicrobial activity. Antimicrobial activity was assessed using the agar well diffusion method against pathogens including Streptococcus mutans, Enterococcus faecalis, C. albicans, Lactobacillus acidophilus, and S. aureus. The zone of inhibition quantified antimicrobial effectiveness. A time-kill curve assay evaluated bactericidal properties and the concentration-dependent relationship between silver nanoparticles and the net growth rate of oral pathogens. Results Statistical analysis was done to compare measures such as mean, standard deviation, and percentages. The antimicrobial assessment demonstrated that 100 µg/mL of silver nanoparticles exhibited the highest efficacy against S. mutans, S. aureus, E. faecalis, and Lactobacillus sp. For C. albicans, all concentrations of silver nanoparticles and the control plant extract displayed similar antimicrobial activity. The time-kill assay illustrated effective inhibition at 100 µg/mL against all tested pathogens, including S. mutans, S. aureus, E. faecalis, C. albicans, and Lactobacillus sp. The result showed positive inhibitory activity of silver nanoparticles against all tested bacterial strains. Conclusion The significant antimicrobial efficacy of green-synthesized silver nanoparticles positions them as promising candidates for dental applications. Their demonstrated bactericidal and fungicidal activities suggest potential use as effective dental antimicrobial agents, opening avenues for innovative solutions in oral healthcare.

8.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474607

RESUMO

In the literature, the chemical composition of Rhododendron tomentosum is mainly represented by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum shoots using ethanol of various concentrations and purified water as an extractant. Extracts from Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and temperature to maximize the extraction of biologically active substances from the raw material. Using the method of high-performance thin-layer chromatography in a system with solvents ethyl acetate/formic acid/water (15:1:1), the following substances have been separated and identified in all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride, respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic substance content. Following the DPPH assay, regression analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.


Assuntos
Anti-Infecciosos , Rhododendron , Antioxidantes/química , Polifenóis , Flavonoides/farmacologia , Rhododendron/química , Extratos Vegetais/química , Anti-Infecciosos/análise , Etanol , Água
9.
Biotechniques ; 76(5): 174-182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425192

RESUMO

Characterizing swimming behavior can provide a holistic assessment of the health, physiology and ecology of microfaunal species when done in conjunction with measuring other biological parameters. However, tracking and quantifying microfauna swimming behavior using existing automated tools is often difficult due to the animals' small size or transparency, or because of the high cost, expertise, or labor needed for the analysis. To address these issues, we created a cost-effective, user-friendly protocol for behavior analysis that employs the free software packages HitFilm and ToxTrac along with the R package 'trajr' and used the method to quantify the behavior of rotifers. This protocol can be used for other microfaunal species for which investigators may face similar issues in obtaining measurements of swimming behavior.


Assuntos
Software , Natação , Natação/fisiologia , Animais , Comportamento Animal/fisiologia , Rotíferos/fisiologia
10.
Mol Divers ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466554

RESUMO

The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3ß, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.

11.
Cureus ; 16(2): e54031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38481883

RESUMO

Background The value and use of medicinal plants, including the widespread cultivation of Rosmarinus officinalis, have increased rapidly. R. officinalis, a medicinal plant native to the Mediterranean, has received attention for its potential therapeutic benefits. This study evaluates R. officinalis anticancer activity using human epithelial carcinoma (KB) cell lines derived from nasopharyngeal epidermoid carcinoma. The KB cell line is known for its increased sensitivity to specific chemotherapeutic agents (CA), making it a useful model in cancer research. The impact of R. officinalis is assessed using comprehensive analyses of cell viability and gene expression. Aim This study aims to evaluate the anti-cancer effects of R. officinalis on KB cell lines. Materials and methods The R. officinalis leaf extract was separated and used to treat KB cell lines. The cell viability of treated KB cells was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) was used to analyze the expressions of matrix metalloproteinase (MMP-9) and tumor-inducing metalloproteins (TIMP-1) messenger ribonucleic acid (mRNA) genes. The statistical analysis was performed. Results This study analyzes the anticancer properties of R. officinalis on KB cell lines. The results show that increasing the concentration of rosemary extract reduces cell viability in malignant cells. Furthermore, the R. officinalis effect on the apoptotic signaling system is demonstrated by a decrease in MMP-9 and TIMP-1 mRNA expressions, as observed by RT-PCR analysis. Conclusion Patients looking for natural anticancer treatments may benefit from biogenically prepared anticancer drugs. The current research focuses on R. officinalis as a potential alternative to chemically synthesized anticancer drugs.

12.
Curr Med Chem ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38486385

RESUMO

BACKGROUND: Traditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, Palmijihwanghwan, and Jowiseungchungtang have been commonly used to treat patients with Alzheimer's disease. However, only a few studies have investigated the effects of these five TOMs on tau pathology. OBJECTIVE: This study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation. METHODS: Immunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively. RESULTS: The five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. Hwanglyeonhaedoktang inhibited the aggregation of tau and promoted the dissociation of tau aggregates. Dangguijakyaksan and Hwanglyeonhaedoktang attenuated tau-induced neurotoxicity in HT22 cells. In addition, Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, and Palmijihwanghwan reduced tauinduced pro-inflammatory cytokine levels in BV2 cells. CONCLUSION: Our results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, Hwanglyeonhaedoktang showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that Hwanglyeonhaedoktang is suitable for treating AD patients with tau pathology.

13.
Saudi Pharm J ; 32(4): 101986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487020

RESUMO

Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 µM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 µM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.

14.
J Helminthol ; 98: e25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509855

RESUMO

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Assuntos
Biomphalaria , Cucurbita , Moluscocidas , Esquistossomose , Animais , Schistosoma mansoni , Caramujos , Cercárias , Moluscocidas/farmacologia , Óleos de Plantas/farmacologia
15.
Biol Pharm Bull ; 47(2): 509-517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403661

RESUMO

(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.


Assuntos
Catequina , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Chá/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
Phytochem Anal ; 35(4): 903-922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403936

RESUMO

INTRODUCTION: The safety and quality of many medicinally important herbs are compromised since farmers and small organizations are involved in the cultivation, aggregation, and primary processing of these herbs. Such organizations often lack adequate quality control facilities. To improve the safety and quality of herbal products, simple, rapid, and affordable quality control systems are required. OBJECTIVES: The aim of this study was to assess the suitability of microwave oven-drying for moisture content (MC) determination and sample preparation of herbs in small organizations. METHODS: Microwave oven-drying (720 W) and convective oven-drying at 105°C for MC determination were compared. The effects of three different drying methods (microwave oven-drying, low-temperature convective drying, and freeze-drying) on in vitro antioxidant and polyphenol oxidase (PPO) activity were determined, similarity analysis was conducted using HPLC signature spectra, and validation was performed with LC-MS focusing on one herb. RESULTS: Microwave oven-drying at 720 W significantly reduced the drying time (from hours to minutes), whereas the spatial variation of temperature in convective ovens set at 105°C can cause about 10% underestimation of MC. Microwave oven-drying showed similar macro-properties like freeze-drying and higher extractability (10%-20%) and in vitro antioxidant capacity (33%-66%) and lower PPO activity compared to low-temperature convective drying. HPLC signature spectra revealed strong similarity of soluble components between freeze-dried and microwave oven-dried herbs. LC-MS analysis demonstrated more common compounds between freeze-dried and microwave oven-dried Centella asiatica extracts, whereas convective tray-dried samples had fewer compounds common with samples obtained by freeze-drying or microwave oven-drying. CONCLUSIONS: Microwave oven-drying is rapid (tens of min) and shows small batch-to-batch variation compared to oven-drying at 105°C. The in vitro antioxidant assays and signature spectra can be used for assessing the source and purity or quality of a specific herb variety.


Assuntos
Antioxidantes , Dessecação , Liofilização , Micro-Ondas , Plantas Medicinais , Controle de Qualidade , Plantas Medicinais/química , Antioxidantes/análise , Antioxidantes/química , Dessecação/métodos , Liofilização/métodos , Cromatografia Líquida de Alta Pressão/métodos , Catecol Oxidase/análise
17.
Inflammopharmacology ; 32(2): 1621-1631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319475

RESUMO

Aframomum melegueta K Schum (A. melegueta), an herbaceous plant renowned for its medicinal seeds, was investigated for its potential immunomodulatory effects in vitro and in vivo using ethanolic and methanolic extracts. The immunomodulatory effect was evaluated by measuring antibody titers using the agglutination technique, while anti-inflammatory activity was assessed in a carrageenan-induced mouse paw edema model. In vitro immunomodulatory activity was measured by lysozyme release from neutrophils. Additionally, white blood cell counts were analyzed post-extracts treatment. The MTT assay was employed to determine cytotoxicity, and the biochemical parameters of liver toxicity were evaluated. Remarkably, both extracts exhibited a dose-dependent reduction in paw edema (p < 0.001), with the most significant reduction observed at 1 g/kg (78.13 and 74.27% for ethanolic and methanolic extracts, respectively). Neutrophil degranulation was significantly inhibited in a dose-dependent manner (p < 0.003), reaching maximal inhibition at 100 µg/mg (60.78 and 39.7% for ethanolic and methanolic extracts, respectively). In comparison to the control group, both antibody production and white blood cell counts were reduced. Neither of the extracts showcased any cytotoxicity or toxicity. These findings suggest that A. melegueta extracts exhibit immunosuppressive and anti-inflammatory activities due to the presence of various biomolecules.


Assuntos
Extratos Vegetais , Zingiberaceae , Camundongos , Animais , Extratos Vegetais/química , Sementes/química , Anti-Inflamatórios/farmacologia , Metanol , Etanol , Zingiberaceae/química , Edema
18.
Biomedicines ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397954

RESUMO

BACKGROUND: Cytogenotoxic damage caused by the consumption of legal and illegal drugs in drug abusers has been demonstrated, primarily due to alterations in their antioxidant capacity, cellular repair mechanisms, and increased production of free radicals. Folic acid shows antioxidant activity by acting as a reducing agent, neutralizing present free radicals, and reducing genomic damage. METHODS: The intervention involved administering 15 mg of folic acid, divided into three doses per day, to a group of 44 drug abusers. The frequency of nuclear abnormalities (NAs) was determined; micronuclei (MNs), nuclear buds (NBUDs), binucleated cells (BNs), abnormally condensed chromatin (CC), karyorrhexis (KX), pyknotic nuclei (PNs), and karyolysis (KL) were determined at different pre-treatment (baseline) and post-treatment time points at 15 and 30 days. Additionally, a group of 44 healthy individuals was used as the control group. RESULTS: We observed a statistically significant decrease in the frequency of NAs in the drug abuser group (28.45 ± 17.74 before supplementation vs. 11.18 ± 7.42 at 15 days and 9.11 ± 10.9 at 30 days of supplementation). Specifically, it decreased the frequency of NBUDs, BNs, CC, KX, and PNs (p < 0.05). CONCLUSION: Our study demonstrates a clear improvement in cytogenotoxic damage in drug abusers supplemented with folic acid.

19.
Pract Lab Med ; 39: e00369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38404524

RESUMO

Background: Comprehensive genomic profiling (CGP) tests have been widely utilized in clinical practice. In this test, the variant list automatically output from the data analysis pipeline often contains false-positive variants, although the correlation between the quality parameters and prevalence of false-positive variants remains unclear. Methods: We analyzed 125 CGP tests performed in our laboratory. False-positive variants were manually detected via visual inspection. The quality parameters of both wet and dry processes were also analyzed. Results: Among the 125 tests, 52 (41.6%) required more than one correction of the called variants, and 21 (16.8%) required multiple corrections. A significant correlation was detected between somatic false-positive variants and quality parameters in the wet (ΔΔCq, pre-capture library peak size, pre-capture library DNA amount, capture library peak size, and capture library concentration) and dry processes (total reads, mapping rates, duplication rates, mean depth, and depth coverage). Capture library concentration and mean depth were strong independent predictors of somatic false-positive variants. Conclusions: We demonstrated a correlation between somatic false-positive variants and quality parameters in the CGP test. This study facilitates gaining a better understanding of CGP test quality management.

20.
BMC Complement Med Ther ; 24(1): 92, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365680

RESUMO

Burns are the fourth most common type of injury worldwide. Many patients also suffer numerous infections and complications that impair the burn healing process, which makes the treatment of burns a challenge. This study aimed to prepare and characterize nano-emulsion (NE) of propolis, hyaluronic acid, and vitamin K for treatment of second-degree burns. High-Pressure Liquid Chromatography (HPLC) was used for the qualitative assessment of the phenolic and flavonoid contents in crude propolis. The structural, optical, and morphological characterization, besides the antimicrobial, antioxidant, cytotoxicity, in-vitro, and in-vivo wound healing activities were evaluated. For in-vivo study, 30 adult male albino rats were divided randomly into control and treated groups, which were treated with normal saline (0.9%), and NE, respectively. The wounds were examined clinicopathologically on the 3rd, 7th, and 14th days. The NE revealed the formation of a mesh-like structure with a size range of 80-180 nm and a 21.6 ± 6.22 mV zeta potential. The IC50 of NE was 22.29 µg/ml. Also, the NE showed antioxidant and antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The in-vitro investigation of the NE on normal human skin fibroblasts using scratch assay proved an acceleration for wound healing. The treated rats showed improved wound healing clinically and pathologically and wound contraction percent (WC %) was 98.13% at 14th day, also increased epithelization, fibrous tissue formation, collagen deposition, and angiogenesis compared to the control. It could be concluded that the prepared NE possesses antimicrobial, antioxidant, and healing effect in the treatment of second-degree burns.


Assuntos
Queimaduras , Própole , Animais , Masculino , Ratos , Anti-Infecciosos , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Ácido Hialurônico , Própole/farmacologia , Vitamina K
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA