Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171285, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423304

RESUMO

The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.


Assuntos
Cianobactérias , Diatomáceas , Água Potável , Água Potável/análise , Fitoplâncton , Estações do Ano , Eutrofização , China , Fósforo/análise
2.
J Virol ; 97(4): e0182922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943056

RESUMO

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Assuntos
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virais , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Quaternária de Proteína , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microscopia Crioeletrônica , Suramina/farmacologia
3.
Environ Pollut ; 314: 120305, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181942

RESUMO

Eutrophication due to nitrogen and phosphorus input is an increasing problem in lake ecosystems. Free-living (FL) and particle-attached (PA) bacterial communities play a primary role in mediating biogeochemical processes in these lakes and in responding to eutrophication. However, knowledge of factors governing function, assembly mechanisms, and co-occurrence patterns of these communities remain poorly understood and are key challenges in microbial ecology. To address this knowledge gap, we collected 96 samples from Lake Taihu across four seasons and investigated the bacterial community using 16S rRNA gene sequencing. Our results demonstrate that the α-diversity, ß-diversity, community composition, and functional composition of FL and PA bacterial communities exhibited differing spatiotemporal dynamics. FL and PA bacterial communities displayed similar distance-decay relationships across seasons. Deterministic processes (i.e., environmental filtering and species interaction) were the primary factors shaping community assembly in both FL and PA bacteria. Similar environmental factors shaped bacterial community structure while different environmental factors drove bacterial functional composition. Habitat filtering influenced enrichment of bacteria within specific functional groups. Among them, the FL bacterial community appeared to play a critical role in methane-utilization, whereas the PA bacteria contributed more to biogeochemical cycling of carbon. FL and PA bacterial communities exhibited distinct co-occurrence pattern across different seasons. In the FL network, Methylotenera and Methylophilaceae were identified as keystone taxa, while Burkholderiaceae and the hgcI clade were keystone taxa in the PA network. The PA bacterial community appeared to possess greater stability in the face of environmental change than did FL counterparts. These results broaden our knowledge of the driving factors, co-occurrence patterns, and assembly processes in FL and PA bacterial communities in eutrophic ecosystems and provide improved insight into the underlying mechanisms responsible for these results.


Assuntos
Ecossistema , Lagos , Lagos/microbiologia , RNA Ribossômico 16S/genética , Estações do Ano , Bactérias/genética , Fósforo , Nitrogênio , Metano , Carbono
4.
J Inorg Biochem ; 234: 111904, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779405

RESUMO

Some N2-fixing bacteria store Mo to maintain the formation of the vital FeMo-cofactor dependent nitrogenase under Mo depleting conditions. The Mo storage protein (MoSto), developed for this purpose, has the unique capability to compactly deposit molybdate as polyoxometalate (POM) clusters in a (αß)3 hexameric cage; the same occurs with the physicochemically related tungstate. To explore the structural diversity of W-based POM clusters, MoSto loaded under different conditions with tungstate and two site-specifically modified MoSto variants were structurally characterized by X-ray crystallography or single-particle cryo-EM. The MoSto cage contains five major locations for POM clusters occupied among others by heptanuclear, Keggin ion and even Dawson-like species also found in bulk solvent under defined conditions. We found both lacunary derivatives of these archetypical POM clusters with missing WOx units at positions exposed to bulk solvent and expanded derivatives with additional WOx units next to protecting polypeptide segments or other POM clusters. The cryo-EM map, unexpectedly, reveals a POM cluster in the cage center anchored to the wall by a WOx linker. Interestingly, distinct POM cluster structures can originate from identical, highly occupied core fragments of three to seven WOx units that partly correspond to those found in MoSto loaded with molybdate. These core fragments are firmly bound to the complementary protein template in contrast to the more variable, less occupied residual parts of the visible POM clusters. Due to their higher stability, W-based POM clusters are, on average, larger and more diverse than their Mo-based counterparts.


Assuntos
Molibdênio , Tungstênio , Ânions , Molibdênio/química , Oxigênio , Polieletrólitos , Solventes , Tungstênio/química
5.
Curr Drug Deliv ; 18(7): 914-921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234104

RESUMO

BACKGROUND: In the field of antibacterial, nanomaterials are favored by researchers because of their unique advantages. Medicinal plants, especially traditional Chinese medicine, are considered to be an important source of new chemicals with potential therapeutic effects, as well as an important source for the discovery of new antibiotics. MRSA is endangering people's lives as a kind of multidrug-resistant Staphylococcus aureus, which is resistant to tetracycline, amoxicillin, norfloxacin and other first-line antibiotics. It is a hotspot to find good anti-drug-resistant bacteriae, nature-originated nanomaterials with good biocompatibility. OBJECTIVE: We reported the formation of phytochemical nanoparticles (NPs) by the self-assembly of berberine (BBR) and 3,4,5-methoxycinnamic acid (3,4,5-TCA) from Chinese herb medicine, which had good antibacterial activity against MRSA. METHODS AND RESULTS: We found that NPs had good antibacterial activity against MRSA; especially, its antibacterial activity was better than first-line amoxicillin, norfloxacin and its self-assembling precursors on MRSA. When the concentration reached 0.1 µmol/mL, the inhibition rate of NPs reached 94.62%, which was higher than that of BBR and the other two antibiotics (p < 0.001). It was observed by Field-Emission Scanning Electron Microscopy (FESEM) that NPs could directly adhere to the bacterial surface, which might be an important aspect of the antibacterial activity of NPs. Meanwhile, we further analyzed that the self-assembly was formed by hydrogen bonds and π-π stacking through Ultraviolet-Visible (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), hydrogen Nuclear Magnetic Spectrum (1H NMR), and powder X-ray Diffraction (pXRD). NPs' morphology was observed by FESEM and TEM. The particle size and surface charge were characterized by Dynamic Light Scattering (DLS); and the surface charge was -31.6 mv, which proved that the synthesized NPs were stable. CONCLUSION: We successfully constructed a naturally self-assembled nanoparticle, originating from traditional Chinese medicine, which had a good antibacterial activity for MRSA. It is a promising way to obtain natural nanoparticles from medicinal plants and apply them to antibacterial therapy.


Assuntos
Berberina , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Humanos , Medicina Tradicional Chinesa , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
6.
ACS Nano ; 13(5): 5841-5851, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30969107

RESUMO

Biosynthesis offers opportunities for cost-effective and sustainable production of semiconductor quantum dots (QDs), but is currently restricted by poor controllability on the synthesis process, resulting from limited knowledge on the assembly mechanisms and the lack of effective control strategies. In this work, we provide molecular-level insights into the formation mechanism of biogenic QDs (Bio-QDs) and its connection with the cellular substrate metabolism in Escherichia coli. Strengthening the substrate metabolism for producing more reducing power was found to stimulate the production of several reduced thiol-containing proteins (including glutaredoxin and thioredoxin) that play key roles in Bio-QDs assembly. This effectively diverted the transformation route of the selenium (Se) and cadmium (Cd) metabolic from Cd3(PO4)2 formation to CdS xSe1- x QDs assembly, yielding fine-sized (2.0 ± 0.4 nm), high-quality Bio-QDs with quantum yield (5.2%) and fluorescence lifetime (99.19 ns) far exceeding the existing counterparts. The underlying mechanisms of Bio-QDs crystallization and development were elucidated by density functional theory calculations and molecular dynamics simulation. The resulting Bio-QDs were successfully used for bioimaging of cancer cells and tumor tissue of mice without extra modification. Our work provides fundamental knowledge on the Bio-QDs assembly mechanisms and proposes an effective, facile regulation strategy, which may inspire advances in controlled synthesis and practical applications of Bio-QDs as well as other bionanomaterials.


Assuntos
Cádmio/química , Imagem Molecular/métodos , Pontos Quânticos/química , Selênio/química , Animais , Cádmio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluorescência , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Pontos Quânticos/metabolismo , Selênio/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Tiorredoxinas/química , Tiorredoxinas/genética
7.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635381

RESUMO

Bacterial communities play essential roles in estuarine marsh ecosystems, but the interplay of ecological processes underlying their community assembly is poorly understood. Here, we studied the sediment bacterial communities along a linear gradient extending from the water-land junction toward a high marsh, using 16S rRNA gene amplicon sequencing. Bacterial community compositions differed significantly between sediment transects. Physicochemical properties, particularly sediment nutrient levels (i.e., total nitrogen [TN] and available phosphorus [AP]), as well as sediment physical structure and pH (P < 0.05), were strongly associated with the overall community variations. In addition, the topological properties of bacterial cooccurrence networks varied with distance to the water-land junction. Both node- and network-level topological features revealed that the bacterial network of sediments farthest from the junction was less intense in complexity and interactions than other sediments. Phylogenetic null modeling analysis showed a progressive transition from stochastic to deterministic community assembly for the water-land junction sites toward the emerging terrestrial system. Taken together, data from this study provide a detailed outline of the distribution pattern of the sediment bacterial community across an estuarine marsh and inform the mechanisms and processes mediating bacterial community assembly in marsh soils.IMPORTANCE Salt marshes represent highly dynamic ecosystems where the atmosphere, continents, and the ocean interact. The bacterial distribution in this ecosystem is of great ecological concern, as it provides essential functions acting on ecosystem services. However, ecological processes mediating bacterial assembly are poorly understood for salt marshes, especially the ones located in estuaries. In this study, the distribution and assembly of bacterial communities in an estuarine marsh located in south Hangzhou Bay were investigated. The results revealed an intricate interplay between stochastic and deterministic processes mediating the assembly of bacterial communities in the studied gradient system. Collectively, our findings illustrate the main drivers of community assembly, taking into consideration changes in sediment abiotic variables and potential biotic interactions. Thus, we offer new insights into estuarine bacterial communities and illustrate the interplay of ecological processes shaping the assembly of bacterial communities in estuarine marsh ecosystems.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Estuários , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA