Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579645

RESUMO

BACKGROUND: Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE: This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN: The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS: Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS: SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION: Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.


Assuntos
Flavonoides , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Traumatismo por Reperfusão , Flavonoides/farmacologia , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fármacos Neuroprotetores/farmacologia , Succinato Desidrogenase/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos Sprague-Dawley , Sobrevivência Celular/efeitos dos fármacos , Ratos , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Pharmacol Res ; 204: 107194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663526

RESUMO

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.


Assuntos
Antibacterianos , Flavonoides , Microbioma Gastrointestinal , Lincomicina , Sistema de Sinalização das MAP Quinases , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lincomicina/farmacologia , Camundongos , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia
3.
J Nat Med ; 78(3): 590-598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573419

RESUMO

Baicalin and berberine are biologically active constituents of the crude drugs Scutellaria root and Coptis rhizome/Phellodendron bark, respectively. Baicalin and berberine are reported to combine together as a 1:1 complex that forms yellow precipitates by electrostatic interaction in decoctions of Kampo formulae containing these crude drugs. However, the structural basis and mechanism for the precipitate formation of this compound-compound interaction in aqueous solution remains unclarified. Herein, we searched for berberine derivatives in the Coptis rhizome that interact with baicalin and identified the chemical structures involved in the precipitation formation. Precipitation assays showed that baicalin formed precipitates with berberine and coptisine but not with palmatine and epiberberine. Thus, the 2,3-methylenedioxy structure may be crucial to the formation of the precipitates, and electrostatic interaction is necessary but is not sufficient. In this multicomponent system experiment, palmatine formed a dissociable complex with baicalin and may competitively inhibit the formation of berberine and coptisine precipitation with baicalin. Therefore, the precipitation formed by berberine and baicalin was considered to be caused by the aggregation of the berberine-baicalin complex, and the 2,3-methylenedioxy structure is likely crucial to the aggregation of the complex.


Assuntos
Berberina , Flavonoides , Berberina/química , Berberina/análogos & derivados , Flavonoides/química , Alcaloides de Berberina/química , Coptis/química , Água/química , Estrutura Molecular , Rizoma/química
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621980

RESUMO

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Espécies Reativas de Oxigênio , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transdução de Sinais
5.
Heliyon ; 10(7): e29151, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617936

RESUMO

Baicalin, a flavonoid extracted from traditional Chinese medicine, Scutellaria baicalensis has significant anti-inflammatory effects. Microsponges are drug delivery systems that improve drug stability and slow the release rate. The combination of baicalin and the microsponges produced a new and stable system for its delivery, resulting in a novel formulation of baicalin. Baicalin microsponges (BM) were prepared using the quasi-emulsion solvent diffusion method. Effects of the mass ratio of the polymer (ethylcellulose) to baicalin, the concentration of the emulsifier polyvinyl alcohol (PVA), the stirring speed on the encapsulation efficiency (EE), and yield of the microsponges were investigated by combining the one-factor test and Box-Behnken design (BBD). The preparation process was standardised using 2.61:1 mass ratio of ethyl cellulose to baicalin, 2.17% concentration of PVA, with stirring at 794 rpm. Optimised BM formulations were evaluated for the parameters of EE (54.06 ± 3.02)% and yield of (70.37 ± 2.41)%, transmission electron microscopy (TEM), and in vitro cell evaluation. Results of the in vitro anti-inflammatory assay showed that baicalin microsponges-pretreated-lipopolysaccharide (LPS)-induced RAW264.7, mouse macrophages showed reduced inflammatory response, similar to that seen in baicalin-treated macrophages.

6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474182

RESUMO

Blocking the interaction between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme II (hACE2) protein serves as a therapeutic strategy for treating COVID-19. Traditional Chinese medicine (TCM) treatments containing bioactive products could alleviate the symptoms of severe COVID-19. However, the emergence of SARS-CoV-2 variants has complicated the process of developing broad-spectrum drugs. As such, the aim of this study was to explore the efficacy of TCM treatments against SARS-CoV-2 variants through targeting the interaction of the viral spike protein with the hACE2 receptor. Antiviral activity was systematically evaluated using a pseudovirus system. Scutellaria baicalensis (S. baicalensis) was found to be effective against SARS-CoV-2 infection, as it mediated the interaction between the viral spike protein and the hACE2 protein. Moreover, the active molecules of S. baicalensis were identified and analyzed. Baicalein and baicalin, a flavone and a flavone glycoside found in S. baicalensis, respectively, exhibited strong inhibitory activities targeting the viral spike protein and the hACE2 protein, respectively. Under optimized conditions, virus infection was inhibited by 98% via baicalein-treated pseudovirus and baicalin-treated hACE2. In summary, we identified the potential SARS-CoV-2 inhibitors from S. baicalensis that mediate the interaction between the Omicron spike protein and the hACE2 receptor. Future studies on the therapeutic application of baicalein and baicalin against SARS-CoV-2 variants are needed.


Assuntos
COVID-19 , Flavonas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Glicoproteína da Espícula de Coronavírus , Angiotensinas , Ligação Proteica
7.
Eur J Pharmacol ; 969: 176427, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428662

RESUMO

Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Inflamação/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia , Infarto da Artéria Cerebral Média/metabolismo
8.
Int J Biol Macromol ; 263(Pt 1): 130349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387634

RESUMO

With the extensive application of baicalein in the treatment of cardiovascular and cerebrovascular diseases, its clinical and market demand has gradually expanded. But the natural yield of baicalein is very low, and it is mainly prepared by the deglycosylation of baicalin. However, the insolubility of baicalin in water significantly limits the deglycosylation of it under biocatalysis. To make biocatalysis of baicalin more efficient and environmental, a strategy was designed to enhance its water solubility through the solubilization mechanism of endogenous biological macromolecules, and the effect on the activity of glucuronidase was further explored. The results showed that wrapping with Scutellaria baicalensis polysaccharide (SBP) significantly improved the solubility of baicalin in water (the water solubility of baicalin increased by 23 times, BI/SBP = 1/12, w/w). It was not only contributed to the efficient production of baicalein by one-pot method, but also effectively improved the deglycosylation rate of baicalin (increase by 47.04 % in aqueous solution). With the help of the solubilization of endogenous polysaccharide on baicalin in aqueous solution, a green, low-cost and efficient method (one-pot method) was designed to simultaneously extract and enzymatic hydrolyze baicalin to prepare baicalein. Under the same conditions, the yield of one-pot method is 87.17 %, which was much higher than that of the conventional method (29.38 %). In addition, one-pot method with the aid of endogenous polysaccharide could simply and conveniently prepare aglycone of other insoluble natural flavonoids, which has a wide range of industrial application value.


Assuntos
Flavanonas , Scutellaria baicalensis , Flavonoides , Extratos Vegetais , Água
9.
J Med Food ; 27(4): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377551

RESUMO

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Assuntos
Cartilagem Articular , Flavonoides , Proteína Forkhead Box O1 , Osteoartrite , Animais , Humanos , Apoptose , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Homeostase , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo
10.
Phytomedicine ; 126: 155416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394726

RESUMO

BACKGROUND: Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE: To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS: We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS: A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS: Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Magnésio , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Água
11.
Curr Mol Pharmacol ; 17: e18761429263063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284731

RESUMO

Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/ß-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.


Assuntos
Neoplasias da Mama , Flavonoides , Neoplasias dos Genitais Femininos , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias dos Genitais Femininos/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos
12.
Phytomedicine ; 124: 155296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176276

RESUMO

BACKGROUND: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin. PURPOSE: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms. METHODS: Insulin-resistant (IR)-HepG2 cells were stimulated by dexamethasone (20 µM) and high glucose (50 mM) for 48 h and incubated with or without baicalin or metformin for another 16 h. Male C57BL/6 J mice were fed with a high-fat diet (HFD, 60 % kcal% fat) during the total 14 weeks. Obese mice were then administered with baicalin (50 and 100 mg/kg) or vehicle solution everyday through oral gavage during the last 4-week period. Moreover, baicalin metabolisms in vitro and in vivo were determined using UPLC/MS/MS to study its metabolism situation. RESULTS: Exposure to dexamethasone and high glucose damaged the abilities of glycogen synthesis and glucose uptake with elevated oxidative stress and increased generation levels of advanced glycation end-products (AGEs) in HepG2 cells. These impairments were basically reversed by baicalin treatment. Four-week oral administration with baicalin ameliorated hyperglycemia and dyslipidemia in HFD-induced obese and pre-diabetic mice. Downregulation of IRS/PI3K/Akt signaling pathway accomplished with reduced GLUT4 expression and enhanced GSK-3ß activity was observed in insulin resistant HepG2 cells as well as liver tissues from pre-diabetic mice; and such effect was prevented by baicalin. Moreover, baicalin and its matabolites were detected in IR-HepG2 cells and mouse plasma. CONCLUSION: The study illustrated that baicalin alleviated insulin resistance by activating insulin signaling pathways and inhibiting oxidative stress and AGEs production, revealing the potential of baicalin to be a therapeutic natural flavonoid against hepatic insulin and glucose-lipid metabolic disturbance in pre-diabetes accompanied with obesity.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Estado Pré-Diabético , Masculino , Camundongos , Animais , Glucose/metabolismo , Insulina/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Camundongos Obesos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Espectrometria de Massas em Tandem , Camundongos Endogâmicos C57BL , Flavonoides/uso terapêutico , Transdução de Sinais , Fígado , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dexametasona/farmacologia , Dieta Hiperlipídica/efeitos adversos
13.
Phytomedicine ; 124: 155233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181526

RESUMO

BACKGROUND: With the growing aging population and longer life expectancy, periodontitis and tooth loss have become major health concerns. The gut microbiota, as a key regulator in bone homeostasis, has gathered immense interest. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis Georgi, has shown antioxidant and anti-inflammatory activities. PURPOSE: This study investigated, for the first time, the protective mechanism of baicalin against alveolar bone inflammatory resorption in aging mice by regulating intestinal flora and metabolites, as well as intestinal barrier function. METHODS: A ligature-induced periodontitis model was established in d-galactose (D-gal)-induced aging mice, and baicalin was administered at different dosages for 13 weeks. Body weight was measured weekly. The antioxidant and anti-inflammatory activity of baicalin were evaluated using serum superoxide dismutase (SOD), malonaldehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels. The immune capability was assessed by thymus and spleen indices. Histopathological changes were observed in the heart, liver, ileum, and periodontal tissues. Alveolar bone absorption of maxillary second molars was examined, and osteoclasts were counted by tartrate-resistant acid phosphatase (TRAP) staining. Furthermore, fecal samples were analyzed using 16S rRNA sequencing and non-targeted metabolomics to identify differences in intestinal bacterial composition and metabolites. RESULTS: Baicalin exhibited anti-aging properties, as evidenced by increased SOD activity and decreased levels of MDA, IL-6, and TNF-α in serum compared to the control group. Baicalin also ameliorated alveolar bone loss in the d-gal-induced aging-periodontitis group (p < 0.05). Furthermore, baicalin restored ileal permeability by up-regulating the expression of ZO-1 and occludin in aging-periodontitis groups (p < 0.05). Alpha diversity analysis indicated that baicalin-treated mice harbored a higher diversity of gut microbe. PCoA and ANOSIM results revealed significant dissimilarity between groups. The Firmicutes/Bacteroidetes (F/B) ratio, which decreased in periodontitis mice, was restored by baicalin treatment. Additionally, medium-dosage baicalin promoted the production of beneficial flavonoids, and enriched short-chain fatty acids (SCFAs)-producing bacteria. CONCLUSION: Intestinal homeostasis is a potential avenue for treating age-related alveolar bone loss. Baicalin exerts anti-inflammatory, antioxidant, and osteo-protective properties by regulating the gut microbiota and metabolites.


Assuntos
Perda do Osso Alveolar , Microbiota , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes/uso terapêutico , RNA Ribossômico 16S , Periodontite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Envelhecimento , Superóxido Dismutase
14.
Phytomedicine ; 125: 155337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241915

RESUMO

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Assuntos
Acetilcisteína , Cádmio , Flavonoides , Camundongos , Animais , Acetilcisteína/farmacologia , Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Inflamação/metabolismo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico
15.
Pharmacol Res ; 199: 107032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061594

RESUMO

Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.


Assuntos
Flavanonas , Neoplasias , Humanos , Microambiente Tumoral , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
16.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5863-5870, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114182

RESUMO

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 µmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1ß(IL-1ß), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 µmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 µmol·L~(-1) BAI significantly increased the SOD activity and 5 µmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1ß, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Assuntos
Microglia , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Superóxido Dismutase/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6183-6190, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114225

RESUMO

Traditional Chinese medicine(TCM) compound preparations have complex compositions. As a widely used TCM injection, Shuganning Injection, its in vivo processes are not yet fully understood. Determining the plasma protein binding rate is of great significance for pharmacokinetic and pharmacodynamic studies. In this experiment, the equilibrium dialysis method combined with UPLC-MS/MS technology was used to determine the plasma protein binding rates of 10 components, including p-hydroxyacetophenone, caffeic acid, baicalein, oroxylin A, geniposide, baicalin, cynaroside, oroxylin A-7-O-ß-D-glucuronide, scutellarin, and hyperoside, in Shuganning Injection in rat and human plasma to provide a theoretical basis for further elucidating the in vivo processes of Shuganning Injection and guiding clinical medication. The results showed that, except for baicalein and geniposide, the plasma protein binding rates of the other eight components were higher in human plasma than in rat plasma, and there were interspecies differences. In human plasma, except for geniposide, caffeic acid, and baicalin, the plasma protein binding rates of the remaining seven components were above 80%, with baicalein and oroxylin A exceeding 90%. All components exhibit a high level of binding to plasma proteins, with the exception of geniposide.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Ratos Sprague-Dawley , Espectrometria de Massa com Cromatografia Líquida , Ligação Proteica , Diálise Renal , Proteínas Sanguíneas , Cromatografia Líquida de Alta Pressão/métodos
18.
J Tradit Complement Med ; 13(6): 561-567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020548

RESUMO

Objective: Baicalin, which is a key bioactive constituent obtained from Scutellaria baicalensis, has been utilized in traditional Chinese medicine for many centuries. Although it has been reported that Baicalin (BA) can inhibit the replication of the Hepatitis B virus (HBV), the exact mechanism behind this process remains unclear. Interferon-stimulated genes (ISGs) are crucial in the process of antiviral defense. We aim to investigate whether BA can regulate the expression of ISGs, and thereby potentially modulate the replication of HBV. Methods: The study involved the use of CRISPR/Cas9 technology to perform knockout experiments on TRIM25 and IFIT3 genes. The expression of these genes was confirmed through techniques such as immunoblotting or Q-PCR. The levels of HBsAg and HBeAg were measured using ELISA, and the expression of interferon-stimulated genes was detected using a luciferase assay. Results: It is interesting to note that several ISGs belonging to the TRIM family, including TRIM5, TRIM25, and TRIM14, were induced after BA treatment. On the other hand, members of the IFIT family were reduced by BA stimulation. Additionally, BA-mediated HBV inhibition was found to be significantly restored in HepG2 cells where TRIM25 was knocked out. Additional research into the mechanism of action of BA found that prolonged treatment with BA activated the JAK/STAT signaling pathway while simultaneously inhibiting the NF-kB pathway. Conclusion: The findings of our study indicate that TRIM25 has a significant impact on the regulation of HBV replication following BA treatment, providing additional insight into the mechanisms by which BA exerts its antiviral effects.

19.
Bioorg Med Chem Lett ; 96: 129491, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778427

RESUMO

Baicalin, a glucuronic flavone, is the major active component in the medicinal plant Scutellaria baicalensis. Herein, baicalin was irradiated by γ-rays to afford four unusual flavanones, baicalinols A (2), B (3), and C (4) and peroxybaicaleinol (5), and two known flavones, oroxylin A (6) and baicalein (7). The structures of the hydroxymethylated products were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry, and their absolute configuration was established using electronic circular dichroism spectroscopy. Novel hydroxymethylated flavanones 2 and 3 suppressed both nitric oxide (NO) production and the expression of inducible NO synthase and showed significantly higher anti-inflammatory activities in lipopolysaccharide-stimulated macrophages than the parent compound. These newly generated hydroxymethylated flavanones can be potentially used for treating inflammatory diseases.


Assuntos
Flavanonas , Plantas Medicinais , Óxido Nítrico , Flavonoides/farmacologia , Flavonoides/química , Flavanonas/farmacologia , Scutellaria baicalensis/química , Plantas Medicinais/química
20.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764277

RESUMO

The gut-brain axis is an active area of research. Several representative diseases, including central nervous system disorders (Alzheimer's disease, Parkinson's disease, and depression), metabolic disorders (obesity-related diseases), and intestinal disorders (inflammatory bowel disease and dysbiosis), are associated with the dysfunctional gut-brain axis. Baicalin, a bioactive flavonoid extracted from Scutellaria baicalensis, is reported to exert various pharmacological effects. This narrative review summarizes the molecular mechanisms and potential targets of baicalin in disorders of the gut-brain axis. Baicalin protects the central nervous system through anti-neuroinflammatory and anti-neuronal apoptotic effects, suppresses obesity through anti-inflammatory and antioxidant effects, and alleviates intestinal disorders through regulatory effects on intestinal microorganisms and short-chain fatty acid production. The bioactivities of baicalin are mediated through the gut-brain axis. This review comprehensively summarizes the regulatory role of baicalin in gut-brain axis disorders, laying a foundation for future research, although further confirmatory basic research is required.


Assuntos
Doença de Alzheimer , Eixo Encéfalo-Intestino , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA