Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472805

RESUMO

A fruit leather (apple and acáchul berry) oriented toward women of reproductive age was developed. The snack was supplemented with an ingredient composed of folic acid (FA) and whey proteins (WPI) to ensure the required vitamin intake to prevent fetal neural tube defects. In order to generate a low-calorie snack, alternative sweeteners were used (stevia and maltitol). The fruit leather composition was determined. Also, an in vitro digestion process was carried out to evaluate the bioaccessibility of compounds with antioxidant capacity (AC), total polyphenols (TPCs), total monomeric anthocyanins (ACY), and FA. The quantification of FA was conducted by a microbiological method and by HPLC. The leather contained carbohydrates (70%) and antioxidant compounds, mainly from fruits. Bioaccessibility was high for AC (50%) and TPCs (90%), and low for ACY (17%). Regarding FA, bioaccessibility was higher for WPI-FA (50%) than for FA alone (37%), suggesting that WPI effectively protected the vitamin from processing and digestion. Furthermore, the product was shown to be non-cytotoxic in a Caco-2 cell model. The developed snack is an interesting option due to its low energy intake, no added sugar, and high content of bioactive compounds. Also, the supplementation with WPI-FA improved the conservation and bioaccessibility of FA.

2.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474665

RESUMO

Vitamin D3 deficiency is a global phenomenon, which can be managed with supplementation and food fortification. However, vitamin D3 bioaccessibility may depend on factors such as matrix composition and interactions throughout the gastrointestinal (GI) tract. This research focused on the effect of different matrices on vitamin D3 content during digestion, as well as the effect of pH on its bioaccessibility. The INFOGEST protocol was employed to simulate digestion. Three different types of commercial supplements, two foods naturally rich in vitamin D3, and three fortified foods were investigated. High-Performance Liquid Chromatography was used to determine the initial vitamin D3 content in the supplements and foods, as well as after each digestion stage. The results indicate that the foods exhibited higher bioaccessibility indices compared to the supplements and a higher percentage retention at the end of the gastric phase. The pH study revealed a positive correlation between an increased gastric pH and the corresponding content of vitamin D3. Interestingly, exposing the matrix to a low pH during the gastric phase resulted in an increased intestinal content of D3. Vitamin D3 is more bioaccessible from foods than supplements, and its bioaccessibility is susceptible to changes in gastric pH. Fasting conditions (i.e., gastric pH = 1) enhance the vitamin's bioaccessibility.


Assuntos
Colecalciferol , Suplementos Nutricionais , Colecalciferol/química , Suplementos Nutricionais/análise , Alimentos Fortificados/análise , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Digestão , Disponibilidade Biológica
3.
Food Chem ; 446: 138797, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442678

RESUMO

This study investigated the effects of different matrices on gel properties, lipid digestibility, ß-carotene bioaccessibility, released free amino acids and gel network degradation. Microstructure studies have proven that sugar beet pectin/soy protein isolate-based emulsion-filled gel (SBP/SPI-E) with interpenetrating networks was formed. SBP/SPI-E exhibited higher hardness (2.67 N, p < 0.05) and released lesser free amino acids (269.48-µmol/g SPI) than soy protein isolate-based emulsion-filled gel (SPI-E) in simulated intestinal fluid (SIF); however, both had similar free amino acids contents in simulated colonic fluid. SBP has the potential to delay gel network degradation in SIF, as evidenced by the sugar stain strips of SDS-PAGE and microstructure observation. Furthermore, SBP/SPI-E and SPI-E exhibited similar ß-carotene bioaccessibility in SIF, suggesting that SBP from composite gel could not affect the aforementioned bioaccessibility. The study provides useful information for the design of functional gels in the application of fat-soluble nutrient delivery.


Assuntos
Pectinas , Proteínas de Soja , Emulsões/química , Proteínas de Soja/química , Pectinas/química , beta Caroteno , Géis/química , Aminoácidos , Açúcares
4.
Food Chem ; 448: 139054, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552465

RESUMO

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Assuntos
Caseínas , Ácidos Graxos , Quercetina , Quercetina/química , Quercetina/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Caseínas/química , Caseínas/metabolismo , Estabilidade de Medicamentos , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Água/química , Gorduras na Dieta/metabolismo
5.
J Sci Food Agric ; 104(7): 4465-4472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345147

RESUMO

BACKGROUND: Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 µg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS: Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION: Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Rosmarinus , Antioxidantes/química , Rosmarinus/química , Petroselinum/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Micro-Ondas , Extratos Vegetais/farmacologia , Carne/análise , Culinária , Ácidos Graxos , Ácidos Graxos Insaturados , Digestão
6.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338331

RESUMO

Excess cortisol release is associated with numerous health concerns, including psychiatric issues (i.e., anxiety, insomnia, and depression) and nonpsychiatric issues (i.e., osteoporosis). The aim of this study was to assess the in vitro inhibition of cortisol release, bioaccessibility, and bioavailability exerted by a chemically characterized Scutellaria lateriflora L. extract (SLE). The treatment of H295R cells with SLE at increasing, noncytotoxic, concentrations (5-30 ng/mL) showed significant inhibition of cortisol release ranging from 58 to 91%. The in vitro simulated gastric, duodenal, and gastroduodenal digestions, induced statistically significant reductions (p < 0.0001) in the bioactive polyphenolic compounds that most represented SLE. Bioavailability studies on duodenal digested SLE, using Caco-2 cells grown on transwell inserts and a parallel artificial membrane permeability assay, indicated oroxylin A glucuronide and oroxylin A were the only bioactive compounds able to cross the Caco-2 cell membrane and the artificial lipid membrane, respectively. The results suggest possible applications of SLE as a food supplement ingredient against cortisol-mediated stress response and the use of gastroresistant oral dosage forms to partially prevent the degradation of SLE bioactive compounds. In vivo studies and clinical trials remain necessary to draw a conclusion on the efficacy and tolerability of this plant extract.


Assuntos
Scutellaria , Humanos , Scutellaria/química , Hidrocortisona , Disponibilidade Biológica , Células CACO-2 , Extratos Vegetais/farmacologia
7.
Chem Biodivers ; 21(3): e202301497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303545

RESUMO

Bee bread, a valuable bee product that has recently attracted significant public interest as a nutritional supplement. The aim of this study was to evaluate the presence of phenolic compounds in bee bread samples from the Aegean Region and assess their bioaccessibility using a simulated human digestion model. Various extraction techniques, such as maceration, ultrasound-assisted extraction, and supercritical fluid extraction were employed to obtain extracts of bee bread. The antioxidant capabilities of these extracts were carried out using assays like DPPH⋅, ABTS⋅+ , CUPRAC, and ß-carotene linoleic acid bleaching, and their effectiveness was quantified through IC50 values. The bioaccessibility of phenolic compounds was analysed by using LC-HRMS in a simulated human digestive system using ethanol extracts obtained from bee bread samples of each season by ultrasound-assisted extraction, which has the highest antioxidant activity. In the Aegean bee bread, a total of 25 phenolic compounds which were major phenolics including quercetin, ascorbic acid, isorhamnetin, kaempferol, and hyperoside were identified and quantified. Also, ascorbic acid was the one of the most bioaccessible compounds with the bioaccessibility index 35.38 % for 2021, 16.79 % for 2022. These findings underscore the substantial transformation of the phenolic profile of bee bread as it traverses the human digestive system.


Assuntos
Própole , Humanos , Abelhas , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Fenóis/análise , Ácido Ascórbico , Sistema Digestório/química
8.
Food Chem ; 443: 138607, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301552

RESUMO

Food crops provide a good selenium (Se) source for Se-deficient populations. This study assessed how boiling affects Se concentration, speciation, and bioaccessibility in common food crops to determine human Se intake. Boiling rice resulted in an 11.9% decrease in minimum Se content, while sorghum experienced a maximum (34.9%) reduction. Boiled vegetables showed a 21% - 40% Se loss. Cereals showed notable decreases in selenomethionine (SeMet) and selenocysteine (SeCys2), while most vegetables exhibited a significant reduction in Se-methylselenocysteine (SeMeCys). Boiling significantly reduced the Se bioaccessibility in all food crops, except cabbage and potato. Cereal crops were more efficacious in meeting the recommended daily intake (RDI) of Se compared to vegetables. Rice exceeds other crops and provides up to 39.2% of the WHO/FAO-recommended target minimum daily intake of 60 µg/day. This study provides insight into a substantial dissonance between the estimated daily intake (EDI) of Se and the bioaccessible Se in both raw and boiled crops. Consequently, revising EDI standards is imperative.


Assuntos
Selênio , Humanos , Selenometionina/análise , Produtos Agrícolas , Grão Comestível/química , Verduras
9.
J Food Sci Technol ; 61(1): 97-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192707

RESUMO

The use of microencapsulated ferrous-sulfate is among the various options recommended for food fortification, as the protective wall material surrounding the compound can preserve it from undesirable alterations and also protect the food. Microencapsulated iron can be produced using different wall materials and encapsulation methods. Thus, a microparticle was developed through spray chilling, containing ferrous sulfate (FS), as active compound, and a fat mixture as the coating material. The resulting samples analyzed to determine encapsulation efficiency, particle size distribution, and morphology. Furthermore, the oxidative stability and bioaccessibility of FS microparticles were investigated by simulating in vitro digestion. The findings indicated that the encapsulation technique effectively retained FS, resulting in microparticles physically stable at room temperature with typical morphology. The encapsulation efficiency revealed that lower concentrations of FS led to reduced superficial iron content. However, the oxidative stability demonstrated that the presence of iron in the microparticles accelerated the lipid oxidation process. The in vitro digestion test demonstrated that the microparticles with lower iron content exhibited a higher percentage of bioaccessibility, even when compared to non-encapsulated FS. Additionally, the coating material successfully released FS during the simulation of gastrointestinal digestion, resulting in a bioaccessibility of 7.98%. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05820-1.

10.
Food Res Int ; 177: 113836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225113

RESUMO

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Assuntos
Anti-Hipertensivos , Antioxidantes , Benzotiazóis , Polissacarídeos Bacterianos , Ácidos Sulfônicos , Anti-Hipertensivos/química , Antioxidantes/análise , Hidrólise , Inibidores da Enzima Conversora de Angiotensina/química , Pectinas/análise , Hidrolisados de Proteína/química , Peptídeos/química , Grão Comestível/química , Coloides/análise
11.
Environ Monit Assess ; 196(2): 171, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236342

RESUMO

Nickel (Ni) is a toxic metal that not only pollutes the environment but also causes harmful impacts on plant growth and human health. Therefore, it is crucial to assess the relationship between the phytoavailability of Ni in soil and its accumulation in edible and non-edible parts of vegetables. A pot experiment was conducted to investigate Ni uptake in three different leafy vegetables, spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L.), and fenugreek (Trigonella foenum-graecum L.), grown in soil artificially contaminated with Ni at three different treatment levels (100 mg kg-1, 200 mg kg-1, and 300 mg kg-1). The potential dietary toxicity of these vegetables in humans was examined by using an in vitro digestion model. The lowest and highest chlorophyll contents were detected in lettuce at 300 mg kg-1 of Ni concentration and in control plants of spinach. Their values were 34.16 ± 3.01 (SPAD unit) and 53 ± 3.7673 (SPAD unit), respectively. Among the three vegetables, lettuce and spinach at 300 mg kg-1 exhibited the highest accumulation of Ni, with 43 mg kg-1 in edible parts and 182 mg kg-1 in non-edible parts. Furthermore, health risk index (HRI) values were found to be > 1 for lettuce and fenugreek at Ni concentrations of 200 and 300 mg kg-1 for both children and adults. The average bioaccessibility of Ni in lettuce, fenugreek, and spinach during the gastrointestinal phase was 32-23%, 24-10%, and 45-37%, respectively, at a Ni concentration of 300 mg kg-1. All three vegetables grown on Ni-contaminated soil may potentially contribute to food chain toxicity. The HRI values being > 1 suggest that these vegetables are unsafe for consumption. Monitoring of Ni concentration in leafy vegetables is essential to minimize human health risks associated with food chain contamination.


Assuntos
Monitoramento Ambiental , Níquel , Adulto , Criança , Humanos , Níquel/toxicidade , Medição de Risco , Lactuca , Solo , Spinacia oleracea , Digestão
12.
Environ Pollut ; 344: 123299, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185355

RESUMO

Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Petróleo/metabolismo , Solo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo
13.
J Sci Food Agric ; 104(7): 4242-4250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288644

RESUMO

BACKGROUND: Phytosterols (PS) have various beneficial effects on human health, especially the property of reducing blood cholesterol. However, the low solubility and bioaccessibility of PS have greatly limited their application in functional food ingredients. RESULTS: To improve the bioaccessibility and stability of PS, chitosan-coated PS nanoparticles (CS-PNP) were successfully prepared by self-assembly. The properties of CS-PNP, including size, zeta potential, encapsulation efficiency (EE) and loading amount (LA) were characterised. The optimisation of CS concentration (0.4 mg mL-1) and pH (3.5) resulted in the formation of CS-PNP with an EE of over 90% and a particle size of 187.7 nm. Due to the special properties of CS chitosan, the interaction between CS and soybean protein isolate (SPI)/lecithin (SL) led to the formation of a soluble complex. CS-PNP exhibited good stability to temperature variations but was more sensitive to salt ions. During in vitro digestion, CS efficiently maintained the stability of nanoparticles against the hydrolysis of SPI by pepsin under acidic conditions. However, these nanoparticles tended to aggregate in a neutral intestinal environment. After 3 h of in vitro digestion, the bioaccessibility of PS increased from 18.2% of free PS to 63.5% of CS-PNP. CONCLUSION: Overall, these results highlight the potential of chitosan-coated nanoparticles as effective carriers for the oral administration of PS. This multilayer construction may serve as a promising for applications in food products as delivery vehicles for nutraceuticals. © 2024 Society of Chemical Industry.


Assuntos
Quitosana , Nanopartículas , Fitosteróis , Humanos , Lecitinas , Quitosana/química , Proteínas de Soja/química , Fitosteróis/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
14.
Plant Foods Hum Nutr ; 79(1): 59-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37971652

RESUMO

Gabirobeira fruits are known for their rich nutrient content and bioactive phytochemical compounds that contribute to significant biological activities. Despite these attributes, the antioxidant potential and stability of phenolic compounds in gabiroba by-products after digestion have yet to be studied. The objective of this work was to evaluate the physical-chemical composition, antibacterial activity, α-amylase, and α-glucosidase inhibitory effects, as well as the in vitro digestibility of total phenolic compounds, total flavonoids, and antioxidant activity of powder and extract from gabiroba to valorize these byproducts. The gabiroba powder had low moisture, high carbohydrate and fiber content. The extraction using 80% ethanol demonstrated higher antioxidant, antibacterial, α-amylase, and α-glucosidase inhibition activities compared to the 12% ethanol and water extracts. Catechin and ferulic acid were the major phenolic compounds identified by HPLC-DAD. After digestion, both the powder and the gabiroba extract exhibited a bioaccessibility of more than 30% for total phenolic compounds and antioxidant activity during the gastric phase. However, the dry ethanol extract displayed higher total phenolic compounds after both the gastric and intestinal phases compared to the flour. Processing gabiroba into powder and extract is a promising approach to fully utilize this seasonal fruit, minimize waste, concentrate health-beneficial compounds, and valorize a by-product for use as a functional ingredient and raw material within the food and pharmaceutical industries.


Assuntos
Antioxidantes , Myrtaceae , Antioxidantes/análise , Frutas/química , alfa-Glucosidases , Pós/análise , Fenóis/análise , Extratos Vegetais/química , Etanol , alfa-Amilases , Antibacterianos/análise , Digestão
15.
J Sci Food Agric ; 104(3): 1833-1842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884474

RESUMO

BACKGROUND: The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS: To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION: These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Coffea , Antioxidantes/química , Coffea/metabolismo , Fenóis/química , Polifenóis , Digestão , Extratos Vegetais/química
16.
Environ Pollut ; 341: 122881, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37935301

RESUMO

In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.


Assuntos
Arsênio , Poluentes do Solo , Animais , Camundongos , Arsênio/análise , Chumbo , Solo , Disponibilidade Biológica , Poluentes do Solo/análise , Resultado do Tratamento
17.
Sci Total Environ ; 908: 168374, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956851

RESUMO

Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/análise , Lactuca , Lantânio/toxicidade , Chumbo/toxicidade , Verduras , Endocitose , Poluentes do Solo/análise , Solo
18.
J Trace Elem Med Biol ; 81: 127329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924611

RESUMO

BACKGROUND: The search for alternative protein sources has increased the consumption and commercialization of plant-based beverages (PBBs). This study aimed to determine the total Se content, estimate the bioaccessibility of selenium (Se) in commercial PBBs derived from different raw materials, and evaluate their contribution to the reference daily intake (RDI). METHODS: An ultrasound assisted acid digestion method and ICP-MS was used to determine Se, and the INFOGEST method to estimate the bioaccessible percentages. Validation of this method was also performed, and the parameters obtained were: LOD and LOQ were 2.1 and 4.0 µg/kg, respectively. For accuracy, recovery percentages ranged from 99 % and 111 % (certified reference materials), and 95 % and 101 % (spiked experiments for bioaccessible extracts as recoveries). RESULTS: The PBBs presented total Se content between 4 and 226 µg/kg. Bioaccessible percentages ranged from 63.5 % (mix of plant sources) to 95.9 % (produced with organic cashew nuts). Only one cashew nut PBBs supplied the daily demand of Se, representing 64.6 %, 75.3 % and 82.2 % of the RDI; for lactating and pregnant women, children (≥ 4 years) and adults, respectively. CONCLUSIONS: The Se determination method through acid digestion assisted by ultrasound and ICP-MS was considered adequate for the PBBs samples. Se content varied according to the raw material used in sample preparation. High percentages (> 60 %) of bioaccessibility were observed and only one PBBs derived from organic cashew nuts supplied the recommended Se demand for different groups of individuals.


Assuntos
Selênio , Gravidez , Criança , Feminino , Humanos , Selênio/análise , Lactação , Bebidas
19.
Food Res Int ; 174(Pt 1): 113580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986448

RESUMO

Pineapple-peel-based chitosan film was employed to extend the shelf life of Indian Cottage Cheese, commonly termed "paneer" in the Indian subcontinent. Pineapple peel extracts (PPE) at 3 different concentrations (1-3 %) were incorporated into the chitosan matrix. In comparison to control samples (unpacked paneer), packaged paneer samples exhibited reduced weight loss, lipid peroxidation, and pH changes. The microbiological shelf life of paneer got extended till 9th day at 4 °C when packaged in chitosan-PPE films. Korsmeyer-Peppas's model suggested that the release of polyphenols from the chitosan-PPE film followed Fickian diffusion. As per sensory evaluation on a 9-point hedonic scale, packaged paneer samples were superior in juiciness, texture, color, flavor, and overall acceptability compared to unpackaged paneer samples. As compared to the control sample (CS), the overall acceptance was higher for the film with 1 % pineapple peel extract (CS PPE 1), followed by films with 2 % and 3 % pineapple peel extracts (CS-PPE 2 and CS-PPE 3). The bio-accessibility study utilized the dynamic gastric model to simulate digestion in the upper gastrointestinal tract and revealed 40-60 % recovery rate of polyphenols from the chitosan-pineapple peel film.


Assuntos
Ananas , Queijo , Quitosana , Antioxidantes , Polifenóis , Extratos Vegetais
20.
Food Res Int ; 173(Pt 2): 113368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803707

RESUMO

Astilbin, a natural flavonoid, possesses multiple functionalities, while the poor bioavailability seriously restricts its application in functional food and medicine. Therefore, in this study, a natural deep eutectic solvent (NaDES) with choline chloride: lactic acid (CHCL-LAC) is selected to deliver astilbin by evaluating the bioaccessibility and antioxidant capacity during in vitro gastrointestinal digestion, and the inhibitory effect with underlying mechanism of astilbin-CHCL-LAC against α-amylase/α-glucosidase were investigated. The CHCL-LAC showed significant high astilbin bioaccessibility (84.1% bioaccessible) and DPPH and ORAC antioxidant capacity with 75.7% and 57.7% respectively after 3 h in vitro digestion, which may be attributed by hydrogen bond based supramolecule formed between astilbin and CHCL-LAC. Moreover, significant inhibitions of astilbin-CHCL-LAC on α-amylase (IC50 of 0.67 g/L) and α-glucosidase (IC50 of 0.64 g/L) were observed in mixed competitive and non-competitive manners. The dominant binding force between enzymes and astilbin were the hydrogen and hydrophobic interaction. This is the first time that the underlying mechanisms for astilbin delivered by NaDESs were revealed, suggesting that CHCL-LAC-based NaDESs are promising ready-to-use vehicles of natural inhibitors for carbohydrate-hydrolyzing enzymes.


Assuntos
Antioxidantes , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Antioxidantes/química , alfa-Amilases/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA