Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612532

RESUMO

Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.


Assuntos
Antocianinas , Cosméticos , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia
2.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540743

RESUMO

Laccase from Trametes versicolor was applied to produce phenolic polymeric compounds with enhanced properties, using a wine lees extract as the phenolic source. The influence of the incubation time on the progress of the enzymatic oxidation and the yield of the formed polymers was examined. The polymerization process and the properties of the polymeric products were evaluated with a variety of techniques, such as high-pressure liquid chromatography (HPLC) and gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The enzymatic polymerization reaction resulted in an 82% reduction in the free phenolic compounds of the extract. The polymeric product recovery (up to 25.7%) and the molecular weight of the polymer depended on the incubation time of the reaction. The produced phenolic polymers exhibited high antioxidant activity, depending on the enzymatic oxidation reaction time, with the phenolic polymer formed after one hour of enzymatic reaction exhibiting the highest antioxidant activity (133.75 and 164.77 µg TE mg-1 polymer) towards the ABTS and DPPH free radicals, respectively. The higher thermal stability of the polymeric products compared to the wine lees phenolic extract was confirmed with TGA and DSC analyses. Finally, the formed phenolic polymeric products were incorporated into chitosan films, providing them with increased antioxidant activity without affecting the films' cohesion.


Assuntos
Antioxidantes , Vinho , Antioxidantes/química , Lacase/química , Vinho/análise , Polímeros/química , Trametes , Embalagem de Alimentos , Fenóis/química , Extratos Vegetais/análise
3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474613

RESUMO

Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.


Assuntos
Farinha , Frutas , Humanos , Frutas/química , Farinha/análise , Antioxidantes/análise , Açúcares/análise , Veganos , Manipulação de Alimentos/métodos , Carboidratos/análise , Extratos Vegetais/análise
4.
Food Res Int ; 182: 114099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519169

RESUMO

This study describes the bioaccessibility in terms of total phenolic content (TPC) and antioxidant capacity before and after in vitro digestion from blackcurrant press cake extracts (BPC) and the bioactivity in cell culture, human erythrocytes as well as the in silico analysis. Chemical analysis of BPC presented an increase in TPC (270%) and anthocyanins (136%) after in vitro digestion, resulting in an improvement of antioxidant activity (DPPH 112%; FRAP: 153%). This behavior may be related to the highest activity of cyanidin-3-rutinoside, as confirmed by in silico analysis. The digested BPC did not exert cytotoxicity in cells and showed less antioxidant activity against the oxidative damage induced in endothelial cells and human erythrocytes compared to the non-digested extract. The results raise a question about the reliability we should place on results obtained only from crude samples, especially those that will be used to produce foods or nutraceuticals.


Assuntos
Antocianinas , Antioxidantes , Humanos , Antioxidantes/análise , Antocianinas/análise , Células Endoteliais , Reprodutibilidade dos Testes , Extratos Vegetais/química , Digestão , Fenóis/análise
5.
Food Res Int ; 181: 114110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448109

RESUMO

Cashew nut testa (CNT) is an underutilized cashew by-product rich in polyphenols. The applications of CNT are limited due to its astringency, less solubility, and instability of polyphenols during the processing. Nanoencapsulation was used to overcome these limitations. ß-cyclodextrin alone and in combination with whey protein isolate (WPI) was used for nano-complex preparation. The WPI/CD-CNT nano-complex powder showed higher encapsulation efficiency (86.9%) and yield (70.5-80%) compared to CD-CNT powder. Both the spray-dried powders showed improved thermal stability, higher solubility (97%), less moisture content, and increased DPPH and ABTS radical scavenging activities indicating potential food and agricultural applications. In addition, the nano-complex powders showed a controlled release of core bio-actives under gastric and intestinal pH compared to the non-encapsulated CNT phenolic extract. Degradation kinetics studies of the CNT extract after thermal and light treatments were also discussed. Both the nano-complexes showed high stability under light and thermal treatment. The results suggest that valorization of CNT can be done through nano-complex preparation and WPI and ß-CD are efficient carrier materials for the encapsulation of polyphenols with potential applications in food and agriculture.


Assuntos
Anacardium , Antioxidantes , Proteínas do Soro do Leite , Nozes , Pós , Fenóis , Polifenóis , Extratos Vegetais
6.
Nutrients ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542694

RESUMO

A three-arm, randomized, placebo-controlled clinical study was conducted to assess the impact of lyophilized pineapple extract with titrated bromelain (Brome-Inf®) and purified bromelain on pain, swelling, trismus, and quality of life (QoL) following the surgical extraction of the mandibular third molars. Furthermore, this study examined the need for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) by comparing their effects with a placebo group. This study enrolled 42 individuals requiring the extraction of a single mandibular third molar under local anesthesia. The patients were randomly assigned to receive Brome-Inf®, purified bromelain, or a placebo orally, initiating treatment on the day of surgery and continuing for the next 7 days. The primary outcome measured was the requirement for NSAIDs in the three groups. Pain, swelling, and trismus were secondary outcome variables, evaluated postoperatively at 1, 3, and 7 days. This study also assessed the comparative efficacy of freeze-dried pineapple extract and single-component bromelain. Ultimately, the placebo group showed a statistically higher need for ibuprofen (from days 1 to 7) at the study's conclusion (p < 0.0001). In addition, reductions in pain and swelling were significantly higher in both the bromelain and pineapple groups (p < 0.0001 for almost all patients, at all intervals) than in the placebo group. The active groups also demonstrated a significant difference in QoL compared to the placebo group (p < 0.001). A non-significant reduction in trismus occurred in the treatment groups compared to the placebo group. Therefore, the administration of pineapple extract titrated in bromelain showed significant analgesic and anti-edema effects in addition to improving QoL in the postoperative period for patients who had undergone mandibular third molar surgery. Moreover, both bromelain and Brome-Inf® supplementation reduced the need for ibuprofen to comparable extents, proving that they are good alternatives to NSAIDs in making the postoperative course more comfortable for these patients. A further investigation with larger samples is necessary to assess the pain-relieving and anti-inflammatory impacts of the entire pineapple phytocomplex in surgical procedures aside from mandibular third molar surgery.


Assuntos
Ananas , Ibuprofeno , Humanos , Ibuprofeno/uso terapêutico , Dente Serotino/cirurgia , Qualidade de Vida , Dor Pós-Operatória/tratamento farmacológico , Bromelaínas/uso terapêutico , Trismo/tratamento farmacológico , Trismo/etiologia , Trismo/prevenção & controle , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Edema/tratamento farmacológico , Edema/etiologia , Edema/prevenção & controle , Extração Dentária/efeitos adversos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38431089

RESUMO

The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and ß-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.


Assuntos
Antioxidantes , Litchi , Animais , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Litchi/metabolismo , Farinha , Estresse Oxidativo , Dieta , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Carboidratos/farmacologia , Glucose/farmacologia
8.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397568

RESUMO

Pineapple by-products are good sources of bromelain, a complex enzyme with commercial applications. This study evaluated the feasibility of producing bromelain powders from pineapple waste using an organic solvent-free approach. Pineapple by-products (from var. MD2), including cores, peels, crowns, stems, and basal stems, were homogenized with deionized water, and the pH of the mixture was adjusted to 4.5 and 9 (isoelectric points of fruit bromelain and stem bromelain), clarified, ultra-filtered, and freeze-dried to produce bromelain powders. The enzymatic activity of the bromelain powders was measured using the gelatin and casein digestion methods. The bromelain powders from the crowns did not show significant enzymatic activity (p < 0.05). Meanwhile, bromelain powders produced from the cores and peels had an enzymatic activity of 694 gelatin digesting units (GDU)/g and 124 casein digesting units (CDU)/mg, and 1179 GDU/g and 217 CDU/mg, respectively. Bromelain powders from the basal stems showed the highest enzymatic activity (2909 GDU/g and 717 CDU/mg). Increasing the pH of the liquid mixture before the purification and freeze drying significantly (p < 0.05) reduced the enzymatic activity of the bromelain powders. Using a practical and organic solvent-free approach, this study demonstrates the feasibility of producing bromelain powders with high enzymatic activity from pineapple waste.

9.
Sci Rep ; 14(1): 4453, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396007

RESUMO

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Assuntos
Antioxidantes , Coffea , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Cafeína/farmacologia , Cafeína/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Antibacterianos/farmacologia , Coffea/química
10.
Trop Anim Health Prod ; 56(2): 72, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326674

RESUMO

This study aimed to assess the impact of adding forage cactus as an additive to the production of corn silage without the cob on the performance of feedlot sheep and subsequent silage losses. The experimental design was completely randomized, consisting of three treatments: corn silage without cob; 0% = 100% corn plant without the cob; 10% = 90% corn plant without cob + 10% forage cactus; 20% = 80% corn plant without cob + 20% forage cactus. Significant effects were observed for dry matter intake (P = 0.0201), organic matter (P = 0.0152), ether extract (P = 0.0001), non-fiber carbohydrates (P = 0.0007). Notably, nutrient digestibility showed significant differences in organic matter (P = 0.0187), ether extract (P = 0.0095), neutral detergent fiber (P = 0.0005), non-fiber carbohydrates (P = 0.0001), and metabolizable energy (P = 0.0001). Performance variables, including total weight gain (P = 0.0148), average daily weight gain (P = 0.0148), feeding efficiency, and rumination efficiency of dry matter (P = 0.0113), also exhibited significant effects. Consequently, it is recommended to include 20% forage cactus in corn silage, which, based on natural matter, helps meet animals' water needs through feed. This inclusion is especially vital in semi-arid regions and aids in reducing silage losses during post-opening silo disposal.


Assuntos
Cactaceae , Zea mays , Animais , Feminino , Dieta/veterinária , Fibras na Dieta , Digestão , Éteres , Lactação , Leite , Extratos Vegetais , Rúmen , Ovinos , Silagem/análise , Aumento de Peso
11.
Food Res Int ; 178: 113878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309896

RESUMO

Coffee processing generates large amounts of residues of which a portion still has bioactive properties due to their richness in phenolic compounds. This study aimed to obtain a coffee husks extract (CHE) and to encapsulate it (ECHE) with polyvinylpyrrolidone using a one-step procedure of solid dispersion. The extraction and encapsulation yields were 9.1% and 92%, respectively. Thermal analyses revealed that the encapsulation increased the thermal stability of CHE and dynamic light scattering analyses showed a bimodal distribution of size with 81% of the ECHE particles measuring approximately 711 nm. Trigonelline and caffeine were the main alkaloids and quercetin the main phenolic compound in CHE, and the encapsulation tripled quercetin extraction. The total phenolics content and the antioxidant activity of ECHE, assayed with three different procedures, were higher than those of CHE. The antioxidant activity and the bioaccessibility of the phenolic compounds of ECHE were also higher than those of CHE following simulated gastrointestinal digestion (SGID). Both CHE and ECHE were not toxic against Alliumcepa cells and showed similar capacities for inhibiting the pancreatic α-amylase in vitro. After SGID, however, ECHE became a 1.9-times stronger inhibitor of the α-amylase activity in vitro (IC50 = 8.5 mg/mL) when compared to CHE. Kinetic analysis revealed a non-competitive mechanism of inhibition and in silico docking simulation suggests that quercetin could be contributing significantly to the inhibitory action of both ECHE and CHE. In addition, ECHE (400 mg/kg) was able to delay by 50% the increases of blood glucose in vivo after oral administration of starch to rats. This finding shows that ECHE may be a candidate ingredient in dietary supplements used as an adjuvant for the treatment of diabetes.


Assuntos
Antioxidantes , Coffea , Ratos , Animais , Antioxidantes/análise , Quercetina , Povidona , Coffea/química , Cinética
12.
Food Res Int ; 178: 114007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309928

RESUMO

The objective of this study was to evaluate, during the drying of spent coffee grounds, the application of pretreatments with ethanol and the application of ultrasound assisting the refractive window (RW) drying, and to compare with convective drying by hot air (AC). The effect on the kinetics parameters of the Fick and Page models were evaluated, as well as on the content of total phenolics and antioxidant capacity. For AC drying, samples of spent ground coffee were prepared in the form of fixed rectangular beds 0.7 cm high, which were placed on polyester sheets and pretreated up to 10 times sprayed with ethanol, then dried by AC at 80 °C and 0.8 m/s. For RW drying, the samples prepared in the same way as for AC were used. For this case, the application of ethanol as pretreatment and the use of ultrasound during process were tested. As results, regardless of the conditions applied, drying by RW was up to 50 % faster, evidenced in the highest values of effective diffusivity (from the Fick model) and the kinetic parameter (from the Page model). Regarding the treatments applied and their effect on the drying kinetics, any treatment had a significant effect on AC drying. On the contrary, the strategies applied in RW drying had significant effects, both the application of pretreatment with ethanol as well as the application of ultrasound assisting the process accelerated the drying kinetics. However, the treatment with ethanol and RW drying was the one that best preserved the phenolic compounds and the antioxidant capacity in the samples. Therefore, these strategies could be a good option to improve RW drying by accelerating the process and preserving the bioactive compounds in the spent coffee grounds for subsequent utilization.


Assuntos
Antioxidantes , Café , Dessecação/métodos , Fenóis , Etanol
13.
Environ Sci Pollut Res Int ; 31(9): 14191-14207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278998

RESUMO

Biosynthesis based on natural compounds has emerged as a sustainable approach for the production of metallic nanoparticles (MNP). The main objective of this study was to biosynthesize stable and multifunctional silver nanoparticles (AgNP) using different plant by-products as reducers and capping agents. Extracts obtained from Eucalyptus globulus, Pinus pinaster, Citrus sinensis, Cedrus atlantica and Camellia sinensis by-products, were evaluated. From all plant by-products tested, aqueous extract of eucalyptus leaves (EL), green tea (GT) and black tea (BT) were selected due to their higher antioxidant phenolic content and were individually employed as reducers and capping agents to biosynthesize AgNP. The green AgNP showed zeta potential values of -31.8 to -36.3 mV, with a wide range of particle sizes (40.6 to 86.4 nm), depending on the plant extract used. Green AgNP exhibited an inhibitory effect against various pathogenic bacteria, including Gram-negative (P. putida, E. coli, Vibrio spp.) and Gram-positive (B. megaterium, S. aureus, S. equisimilis) bacteria with EL-AgNP being the nanostructure with the greatest antimicrobial action. EL-AgNP showed an excellent photodegradation of indigo carmine (IC) dye under direct sunlight, with a removal percentage of up to 100% after 75 min. A complete cost analysis revealed a competitive total cost range of 8.0-9.0 €/g for the biosynthesis of AgNP.


Assuntos
Anti-Infecciosos , Camellia sinensis , Nanopartículas Metálicas , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Chá , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
14.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257290

RESUMO

Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic-maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method.


Assuntos
Melissa , Óleos Voláteis , Polifenóis , Acetona , Destilação , Fenóis , Ácido Gálico
15.
Food Chem ; 442: 138530, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271911

RESUMO

Orange peels contain a considerable number of bioactive compounds such as carotenoids, that can be used as ingredients in high-value products. The aim of this study was to compare orange peel extracts obtained with different green solvents (vegetable oils, fatty acids, and deep eutectic solvents (DES)). In addition, the chemical characterization of a new hydrophobic DES formed by octanoic acid and l-proline (C8:Pro) was performed. The extracts were compared in terms of carotenoid extraction, antioxidant activity by three methods, color, and environmental impact. The results confirmed that the mixture of C8:Pro is a DES and showed the highest carotenoid extraction (46.01 µg/g) compared to hexane (39.28 µg/g). The antioxidant activity was also the highest in C8:Pro (2438.8 µM TE/mL). Finally, two assessment models were used to evaluate the greenness and sustainability of the proposed extractions. These results demonstrated the potential use of orange peels in the circular economy and industry.


Assuntos
Antioxidantes , Citrus sinensis , Solventes/química , Antioxidantes/química , Citrus sinensis/química , Carotenoides/química , Extratos Vegetais/química
16.
J Environ Manage ; 353: 120020, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278115

RESUMO

Dredged soil and phosphogypsum (PG) are waste materials that must be treated to reduce their negative environmental effects. Guided by the concept of waste treatment, this study proposed the use of PG as a supplementary cementitious material to stabilize waste-dredged soil, and calcium aluminate cement (CAC) was selected to further improve the strength of the cement-treated dredged soil. Several laboratory tests were conducted to investigate the pH, unconfined compressive strength (UCS), and failure strain of the cement-treated soils in different proportions. Microstructural and mineralogical tests were performed to reveal the mechanisms underlying the strength improvement of PG and CAC. The results showed that both PG and CAC enhanced the strength of cement-treated dredged soil. PG provided SO2- 4 to promote the formation of ettringite (aluminum ferrite trisulfate (AFt)), whereas CAC neutralized the acidity of PG and provided reactants to the reaction system, leading to an increase in the pH and strength with an increase in the relative CAC content. Meanwhile, an exponential relationship was obtained between pH and qu. Mineralogical changes demonstrated that the major hydration products of cementitious materials, such as calcium silicate (aluminate) hydrate (C-(A)-S-H), AFt, and calcium aluminate hydrate (C-A-H), enhanced the strength by filling pores between particles and bridging soil particles. However, excess CAC content may not be favorable for the later strength formation, the relative CAC content is recommended to be in the range of 40%-60%. Compared to using sand, the construction of a square kilometer of reclamation consumed 3.5 million tons of PG, and saved 1.54 billion USD by using dredged soil as raw material. Hence, the use of PG to treat dredged soils will have great environmental sustainability, economic benefits, and engineering value.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Fósforo , Solo , Resíduos Sólidos , Sulfato de Cálcio
17.
J Adv Res ; 57: 59-76, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931655

RESUMO

BACKGROUND: The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW: This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW: The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.


Assuntos
Braquiúros , Decápodes , Humanos , Animais , Nephropidae , Alimentos Marinhos , Materiais Biocompatíveis
18.
J Sep Sci ; 47(1): e2300597, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095454

RESUMO

Using high-performance liquid chromatography coupled with electrospray ionization-ion mobility spectrometry and mass spectrometry, we proposed a dual-detection method for the identification and profiling of alkaloids in various lotus parts including leaf, plumule, stem, seed epicarp, and receptacle. The eluent from high-performance liquid chromatography was split and conducted to electrospray ionization-ion mobility spectrometry and time-of-flight mass spectrometry separately to facilitate the compound identification. In total, 23 kinds of alkaloids were identified based on m/z, drift time, and retention time, including alkaloid isomers such as lirinidine, N-nornuciferine, and O-nornuciferine with identical m/z that are difficult to differentiate using mass spectrometry alone. Using this method, we investigated the changing dynamics of alkaloid accumulation in lotus leaves and lotus stems at different harvesting periods. The total alkaloid content showed an increasing trend with the growth and development of leave and stem. Overall, the developed dual detection method has the advantages of high peak capacity and high sensitivity compared with the conventional detection method and facilitates the identification of detected compounds.


Assuntos
Alcaloides , Extratos Vegetais , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Mobilidade Iônica , Alcaloides/análise , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
19.
Int J Biol Macromol ; 256(Pt 2): 128501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040148

RESUMO

Nano-carriers are well-known delivery systems to encapsulate different bioactive compounds and extracts. Such nano-systems are used in various food and drug areas to protect active ingredients, increase bioavailability, control the release, and deliver bioactive substances. This study aimed to design and fabricate a stable colloidal nano-delivery system to better preserve the antioxidant properties of pomegranate peel extract (PPE) and protect its sustained release in a gastrointestinal model. To achieve this goal, a nano-phytosomal system was fabricated with plant-based, cost-effective, and food-grade compounds, i.e., phosphatidylcholine (PC) and gamma-oryzanol (GO) for encapsulation of PPE. To fabricate the nano-phytosomes, thin film hydration/sonication method was used. The parameters of particle size, zeta potential, polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) were investigated to evaluate the efficiency of the produced nano-system. In summary, the size, zeta potential, PDI, LC, and EE of homogenous spherical PC-GO-PPE nano-phytosomes (NPs) in the ratio of 8:2:2 % w/w were achieved as 60.61 ± 0.81 nm, -32.24 ± 0.84 mV, 0.19 ± 0.01, 19.13 ± 0.30 %, and 95.66 ± 1.52 %, respectively. Also, the structure of NPs was approved by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The optimized NPs were stable during one month of storage at 4 °C, and changes in the size of particles and PPE retention rate were insignificant (p > 0.05). The nano-encapsulation of PPE significantly decreased the loss of its antioxidant activity during one month of storage at 4 °C. The optimized NPs exhibited prolonged and sustained release of PPE in a gastrointestinal model, so that after 2 h in simulated gastric fluid (SGF) and 4 h in simulated intestinal fluid (SIF), 22.66 ± 2.51 % and 69.33 ± 4.50 % of initially loaded PPE was released, respectively. Optimized NPs had considerable cytotoxicity against the Michigan Cancer Foundation-7 cell line (MCF7) (IC50 = 103 µg/ml), but not against Human Foreskin Fibroblast cell line (HFF-2) (IC50 = 453 µg/ml). In conclusion, spherical PC-GO-PPE NPs were identified as a promising delivery system to efficiently encapsulate PPE, as well as protect and preserve its bioactivity, including antioxidant and cytotoxicity against cancer cell line.


Assuntos
Neoplasias , Fenilpropionatos , Punica granatum , Humanos , Punica granatum/química , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/metabolismo , Fitossomas , Fosfatidilcolinas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Preparações de Ação Retardada , Extratos Vegetais/química
20.
Food Chem ; 438: 137971, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979261

RESUMO

The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.


Assuntos
Proteínas Alimentares , Óleos de Plantas , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA