Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117883, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38331120

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder that poses a significant global health challenge. There is a lack of safe and effective medications to treat AD. Astragalus membranaceous is a traditional Chinese medicine widely used in clinical treatment of skin diseases. Calycosin (CA), derived from the root of Astragalus membranaceous, exhibits dual attributes of anti-inflammatory and antioxidant properties, suggesting its promise for addressing cutaneous inflammation. Nonetheless, the precise mechanisms underlying CA's therapeutic actions in AD remain elusive. AIM OF THE STUDY: This study aimed to evaluate the efficacy and safety of CA in treating AD while also delving into the mechanistic underpinnings of CA's action in AD. MATERIALS AND METHODS: The cell viability and anti-inflammatory impacts of CA in vitro were first gauged using CCK-8 and RT-qPCR. The potential mechanisms of CA were then probed using modular pharmacology. Flow cytometry was employed to ascertain the differentiation of Treg and Th17 cells derived from naïve T cells, as well as the proportions and mean fluorescence intensity (MFI) of human iTreg cells. The expressions of IL-10 and TGF-ß1 were measured and Treg suppression assay was performed. The in vivo therapeutic efficacy of topical CA application was assessed using a calcipotriol (MC903)-induced AD mouse model. The expression metrics of inflammatory cytokines, IL-17A, FOXP3, and RORγt were authenticated via immunohistochemistry, RT-qPCR, Western blot, and ELISA. RESULTS: CA exhibited a favorable safety profile and reduced the mRNA expressions of Th2 inflammatory cytokines in HaCaT cells. Modular pharmacology analysis pinpointed Th17 differentiation as the pivotal mechanism behind CA's therapeutic effect on AD. In vitro, CA fostered the differentiation of naïve T cells into Tregs while inhibiting their differentiation into Th17 cells. Furthermore, CA augmented the proliferation of human iTregs. In vivo, CA alleviated skin manifestations and decreased the levels of inflammatory mediators (IL-4, IL-5, IL-13, TSLP, and NF-κB related cytokines) in AD-like mouse models. Simultaneously, it regulated Treg/Th17 balance through suppressing IL-17A and RORγt expressions and bolstering FOXP3 expression. CONCLUSIONS: The study provides insights into the mechanistic pathways through which CA exerts its anti-inflammatory effects, particularly through promoting Treg cell differentiation and inhibiting Th17 cell differentiation. Furthermore, CA emerges as an alternative or adjunctive treatment strategy for managing AD.


Assuntos
Dermatite Atópica , Isoflavonas , Animais , Camundongos , Humanos , Dermatite Atópica/induzido quimicamente , Interleucina-17 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores , Citocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Diferenciação Celular , Inflamação/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Células Th17
2.
Protoplasma ; 261(1): 103-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524894

RESUMO

An artificial light source is the optimal element for studying the usability of the medicinal plant Astragalus membranaceus as a sprout vegetable. Based on artificial light source conditions, formononetin (FO) level was the highest (2.6 mg/L) in A. membranaceus exposed to white light emitting diode (LED) light, and calycosin (CA) level was the highest (3.09 mg/L) in the plant exposed to red LED light. According to the publicly available transcriptome data of LED-exposed sprout A. membranaceus LED, reference genes related to the content enhancement of FO, an isoflavone compound, and those related to the content enhancement of CA were selected. The expression patterns of these genes were assayed using qPCR. Among the genes related to FO enhancement, Gene-225190T showed the highest mRNA levels in cells of LED-white light-exposed sprout A. membranaceus; among the genes related to CA enhancement, Gene_042770T showed the highest expression under red LED light. Most genes related to the overall biosynthesis regulation of flavonoids of the upper concept of isoflavone were highly expressed in response to red LED light, and the transcriptional level of 4CL in response to red LED light was the highest. Based on these results, the artificial light sources that regulated the FO and CA contents in sprouts A. membranaceus were white and red LED lights, and the selected reference genes were capable of regulating isoflavone biosynthesis.


Assuntos
Astragalus propinquus , Isoflavonas , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Isoflavonas/genética , Isoflavonas/metabolismo , Flavonoides/metabolismo , Luz
3.
Biomed Pharmacother ; 170: 116039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157643

RESUMO

Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Nefropatias , Humanos , Medicina Tradicional Chinesa , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Nefropatias/tratamento farmacológico , Fibrose , Sistemas de Liberação de Medicamentos
4.
Phytomedicine ; 118: 154924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393829

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a heterogeneous carcinoma characterized by the most aggressive phenotype among all breast cancer subtypes. However, therapeutic options for TNBC patients have limited clinical efficacy due to lack of specific target and efficient targeted therapeutics. AIM: To investigate the biological characteristics of a novel estrogen receptor (ER)-α splice variant ER-α30 in breast cancer cells, and its possible role in the anticancer effects of calycosin, a typical phytoestrogen derived from the herbal plant Astragalus membranaceus, against TNBC. This may also provide a better understanding of the inhibitory activity of calycosin on TNBC progression. METHODS: Breast cancer tissues and para-cancer tissues were collected and analyzed for the expression levels of ER-α30 using immunohistochemistry (IHC), and its expression in two TNBC cell lines (MDA-MB-231 and BT-549) was detected by western blot and qRT-PCR assays. Then the alteration of cell viability, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT) in response to overexpression or knockdown of ER-α30 was separately determined by CCK-8, Hoechst 33258, wound healing, transwell and western blot assays in two TNBC cell lines. Next, the anticancer effects of calycosin on MDA-MB-231 cells were evaluated through CCK-8, colony formation, flow cytometry, Hoechst 33258 and western blot assays, along with the role of ER-α30 in these effects and the possible downstream targets of ER-α30. In addition, the in vivo experiments were carried out using MDA-MB-231 xenograft model intraperitoneally treated with calycosin. The volume and weight of xenograft tumor were measured to evaluate the in vivo anticancer activities of calycosin, while the corresponding changes of ER-α30 expression in tumor tissues were detected by IHC. RESULTS: It was demonstrated that the novel ER-α splice variant ER-α30 was primarily distributed in the nucleus of TNBC cells. Compared with normal breast tissues, ER-α30 expression was found in significantly higher levels in breast cancer tissues of ER- and progesterone receptor (PR)-negative subtype, so did in TNBC cell lines (MDA-MB-231 and BT-549) when compared to normal breast cell line MCF10A. Moreover, ER-α30 overexpression strikingly enhanced cell viability, migration, invasion and EMT progression and reduced apoptosis in TNBC cells, whereas shRNA-mediated knockdown of ER-α30 revealed the opposite results. Notably, calycosin suppressed the expression of ER-α30 in a dose-dependent manner, accompanied with the inhibition of TNBC growth and metastasis. A similar finding was observed for the xenografts generated from MDA-MB-231 cells. The treatment with calycosin suppressed the tumor growth and decreased ER-α30 expression in tumor tissues. Furthermore, this inhibition by calycosin was more pronounced in ER-α30 knockdown cells. Meanwhile, we found a positive relationship between ER-α30 and the activity of PI3K and AKT, which could also be inactivated by calycosin treatment. CONCLUSION: For the first time, it is demonstrated that the novel estrogen receptor-α splice variant ER-α30 could function as pro-tumorigenic factor in the context of TNBC by participating in cell proliferation, apoptosis, invasion and metastasis, thus it may serve as a potential therapeutic target for TNBC therapy. Calycosin could reduce the activation of ER-α30-mediated PI3K/AKT pathway, thereby inhibited TNBC development and progression, suggesting that calycosin may be a potential therapeutic option for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Bisbenzimidazol/farmacologia , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular
5.
Phytomedicine ; 115: 154845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148714

RESUMO

BACKGROUND: As a common cerebrovascular disease (CVD) of the elderly, ischemic stroke (IS) is characterized by high disability and mortality. Excessive autophagy induced by IS is implicated in neuronal death, therefore, the inhibition of immoderate autophagy is viewed as a potential therapeutic avenue to treat IS. Calysoin (CA) is a bioactive component of Radix Astragali, which has been widely used to treat CVDs. However, the mechanism of the treatment of IS by CA is still problematic. PURPOSE: Based on the result of network pharmacology, whether CA inhibited autophagy by regulating the STAT3/FOXO3a pathway to alleviate cerebral ischemia-reperfusion injury (CIRI) was investigated in vivo and in vitro for the first time. STUDY DESIGN: Integrate computational prediction and experimental validation based on network pharmacology. METHODS: In current study, network pharmacology was applied to predict the mechanism of the treatment of IS by CA, and it was shown that CA alleviated CIRI by inhibiting autophagy via STAT3/FOXO3a signaling pathway. One hundred and twenty adult male specific pathogen-free Sprague-Dawley rats in vivo and PC12 cells in vitro were used to verify the above prediction results. The rat middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by suture method, and oxygen glucose deprivation/re-oxygenation (OGD/R) model was used to simulate cerebral ischemia in vivo. The content of MDA, TNF-α, ROS and TGF-ß1 in rat serum were detected by ELISA kits. The mRNA and protein expressions in brain tissue were detected by RT-PCR and Western Blotting. The expressions of LC3 in brain were detected immunofluorescent staining. RESULTS: The experimental results demonstrated that administration of CA dosage-dependently improved rat CIRI as evidenced by the reduction in the cerebral infarct volume, amelioration of the neurological deficits. HE staining and transmission electron microscopy results revealed that CA ameliorated cerebral histopathological damage, abnormal mitochondrial morphology, and damaged mitochondrial cristae structure in MCAO/R rats. CA treatment exerted protective effects in CIRI by inhibiting inflammation response, oxidative stress injury, and cell apoptosis in rat and PC12 cells. CA relieved excessive autophagy induced by MCAO/R or OGD/R through downregulating the LC3Ⅱ/LC3Ⅰ ratio and upregulating the SQSTM1 expression. CA treatment also decreased p-STAT3/STAT3 and p-FOXO3a/FOXO3a ratio in the cytoplasm and modulated the autophagy-related gene expression both in vivo and in vitro. CONCLUSION: Treatment with CA attenuated CIRI by reducing excessive autophagy via STAT3/FOXO3a signal pathway in rat and PC12 cells.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/metabolismo , Autofagia , Apoptose
6.
J Ethnopharmacol ; 312: 116432, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37003404

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese drugs, including Buyang Huanwu decoction (BYHWD), have been used in traditional practice to manage cardiovascular and cerebrovascular diseases. However, the effect and mechanisms by which this decoction alleviates diabetes-accelerated atherosclerosis are unknown and require exploration. AIM OF THE STUDY: This study aims to investigate the pharmacological effects of BYHWD on preventing diabetes-accelerated atherosclerosis, and elucidate its underlying mechanism. MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic ApoE-/- mice were treated with BYHWD. Atherosclerotic aortic lesions, endothelial function, mitochondrial morphology, and mitochondrial dynamics-related proteins were evaluated in isolated aortas. High glucose-exposed human umbilical endothelial cells (HUVECs) were treated with BYHWD and its components. AMPK siRNA transfection, Drp1 molecular docking, Drp1 enzyme activity measurement, and so on were used to explore and verify the mechanism. RESULT: BYHWD treatment inhibited the worsening of diabetes-accelerated atherosclerosis by lessening atherosclerotic lesions in diabetic ApoE-/- mice, by impeding endothelial dysfunction under diabetic conditions, and by inhibiting mitochondrial fragmentation by lowering protein expression levels of Drp1 and mitochondrial fission-1 protein (Fis1) in diabetic aortic endothelium. In high glucose-exposed HUVECs, BYHWD treatment also downgraded reactive oxygen species, promoted nitric oxide levels, and abated mitochondrial fission by reducing protein expression levels of Drp1 and fis1, but not mitofusin-1 and optic atrophy-1. Interestingly, we found that BYHWD's protective effect against mitochondrial fission is mediated by AMPK activation-dependent reduction of Drp1 levels. The main serum chemical components of BYHWD, ferulic acid, and calycosin-7-glucoside, can reduce the expression of Drp1 by regulating AMPK, and can inhibit the activity of GTPase of Drp1. CONCLUSION: The above findings support the conclusion that BYHWD suppresses diabetes-accelerated atherosclerosis by reducing mitochondrial fission through modulation of the AMPK/Drp1 pathway.


Assuntos
Aterosclerose , Diabetes Mellitus , Medicamentos de Ervas Chinesas , Camundongos , Humanos , Animais , Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Células Endoteliais , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Glucose/farmacologia , Apolipoproteínas E
7.
Phytomedicine ; 114: 154773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990011

RESUMO

BACKGROUND: Diabetic wounds represent a severe clinical challenge in which impaired M2 macrophage polarization and continuous macrophage glycolysis play crucial roles. Calycosin-7-glucoside (CG) is an isoflavone component in Astragali Radix (AR), which has become a research focus for treating diabetic wounds following reports indicating that it has anti-inflammatory effects. However, the mechanism through which CG can treat diabetic wounds is yet to be deciphered. PURPOSE: This study aimed to evaluate the therapeutic effect of CG on diabetic wounds and its underlying mechanism. METHODS: The potential mechanism underlying the treatment of diabetic wounds by CG was screened using bioinformatics. The therapeutic effects of CG were then investigated using a db/db diabetic wound model. Moreover, an LPS- and IFN-γ-induced RAW264.7 cell inflammation model was used to elucidate the mechanism underlying the therapeutic effects of CG against diabetic wounds. RESULTS: Network pharmacology predicted that the AMPK pathway could be the main target through which CG treats diabetic wounds. In db/db diabetic mice, CG could accelerate wound healing and promote granulation tissue regeneration. Protein chip technology revealed that CG increased the production of M-CSF, G-CSF, GM-CSF, IL-10, IL-13, and IL-4 but not that of MCP-1, IL-1ß, IL-1α, TNF-α, and TNF-RII. Moreover, CG elevated the proportion of Ly6CLo/- anti-inflammatory monocytes in peripheral blood and M2 macrophages in the wound. The ELISA and flow cytometry analyses revealed that CG enhanced the levels of IL-10, VEGF, CD206, and Arg-1 expression whereas it considerably reduced the levels of IL-1, IL-6, IL-12, TNF-α, CD86, and iNOS expression. Meanwhile, CG increased the macrophage mitochondrial membrane potential and decreased the mitochondrial ADP/ATP ratio and glycolysis rate of M1 macrophages through the ROS/AMPK/STAT6 pathway. CONCLUSIONS: The network pharmacology and molecular dockin identified the AMPK pathway as a critical pathway for treating diabetic wounds using topical CG application. CG was found to promote anti-inflammatory monocyte recruitment and decrease the mitochondrial glycolysis rate to induce M2 macrophage polarization via the ROS/AMPK/STAT6 pathway. These results suggest that CG might be a promising therapeutic agent for diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Isoflavonas , Camundongos , Animais , Interleucina-10 , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Diabetes Mellitus Experimental/metabolismo , Glicosídeos , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Espécies Reativas de Oxigênio , Cicatrização , Anti-Inflamatórios
8.
Front Pharmacol ; 14: 1111912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755950

RESUMO

Colon cancer is a highly malignant cancer with poor prognosis. Astragalus membranaceus (Fisch.) Bunge (Huang Qi in Chinese, HQ), a well-known Chinese herbal medicine and a popular food additive, possesses various biological functions and has been frequently used for clinical treatment of colon cancer. However, the underlying mechanism is not fully understood. Isoflavonoids, including formononetin (FMNT) and calycosin (CS), are the main bioactive ingredients isolated from HQ. Thus, this study aimed to explore the inhibitory effects and mechanism of HQ, FMNT and CS against colon cancer by using network pharmacology coupled with experimental validation and molecular docking. The network pharmacology analysis revealed that FMNT and CS exerted their anticarcinogenic actions against colon cancer by regulating multiple signaling molecules and pathways, including MAPK and PI3K-Akt signaling pathways. The experimental validation data showed that HQ, FMNT and CS significantly suppressed the viability and proliferation, and promoted the apoptosis in colon cancer Caco2 and HT-29 cells. HQ, FMNT and CS also markedly inhibited the migration of Caco2 and HT-29 cells, accompanied by a marked increase in E-cadherin expression, and a notable decrease in N-cadherin and Vimentin expression. In addition, HQ, FMNT and CS strikingly decreased the expression of ERK1/2 phosphorylation (p-ERK1/2) without marked change in total ERK1/2 expression. They also slightly downregulated the p-Akt expression without significant alteration in total Akt expression. Pearson correlation analysis showed a significant positive correlation between the inactivation of ERK1/2 signaling pathway and the HQ, FMNT and CS-induced suppression of colon cancer. The molecular docking results indicated that FMNT and CS had a strong binding affinity for the key molecules of ERK1/2 signaling pathway. Conclusively, HQ, FMNT and CS exerted good therapeutic effects against colon cancer by mainly inhibiting the ERK1/2 signaling pathway, suggesting that HQ, FMNT and CS could be useful supplements that may enhance chemotherapeutic outcomes and benefit colon cancer patients.

9.
BMC Pharmacol Toxicol ; 23(1): 77, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207725

RESUMO

BACKGROUND: Estrogen receptor ß (ERß) is the major ER subtype in hepatic stellate cells (HSCs). Previously we reported phytoestrogen calycosin suppressed liver fibrosis progression and inhibited HSC-T6 cell functions, suggesting the effects may be related to ERß. Here, we explore the effect of overexpressed ERß on human HSCs and the role of ERß in pharmacological action of calycosin. METHODS: LX-2 cells were transfected with lentivirus to overexpress ERß. In the presence or absence of overexpressed ERß, the effects of ERß and calycosin on proliferation, migration, activation, collagen production and degradation of TGF-ß1-induced LX-2 cells and the role of ERß in the inhibition effect of calycosin were investigated. LX-2 cells overexpressed with ERß or treated with ER non-selective antagonist ICI182,780 were used to investigate the regulation of ERß on JAK2/STAT3 signaling pathway. CCK-8 method was used to screen effective doses of calycosin and investigate cell proliferation. The cell migration was detected by transwell chamber assay. The expression of α-SMA was detected by immunofluorescence and western blot. The protein expressions of Col-I, MMP1, TIMP1, JAK2, p-JAK2, STAT3 and p-STAT3 were detected by western blot. RESULTS: ERß overexpressed lentivirus was successfully transfected into LX-2 cells with high efficiency. Overexpressed ERß or calycosin alone inhibited the TGF-ß1-induced LX-2 cell proliferation and migration, downregulated the protein expressions of α-SMA, Col-I, TIMP-1, p-STAT3 and upregulated MMP-1. Both overexpressed ERß and calycosin had no significant effect on JAK2, p-JAK2 and STAT3 expressions. ERß overexpression further enhanced the above effects of calycosin. However, after the cells were treated with ICI182,780, downregulation of STAT3 phosphorylation induced by calycosin was reversed. CONCLUSIONS: ERß mediated the inhibition of major functions of LX-2 cell possibly by inhibiting the phosphorylation of STAT3, and was an important pathway through which calycosin exerted anti-liver fibrosis effect.


Assuntos
Receptor beta de Estrogênio , Células Estreladas do Fígado , Proliferação de Células , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/uso terapêutico , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Isoflavonas , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Metaloproteinase 1 da Matriz/uso terapêutico , Fosforilação , Fitoestrógenos/farmacologia , Fator de Transcrição STAT3 , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico
10.
J Ethnopharmacol ; 297: 115536, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35843413

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shaoyao Gancao Decoction (SG-Tang), originated from the Treatise on Febrile Diseases, is often used to treat OA pain symptoms. Whereas its efficacy has been verified by several clinical studies, the underlying mechanism remained unclear. Network pharmacology and UPLC-QTOF-MS analysis found that calycosin could be regarded as the active components of SG-Tang in treating OA. However, the effect of calycosin on cartilage destruction and the pathogenesis of OA are not known. Therefore, we evaluated the benefits of calycosin for OA and revealed the underlying mechanisms. AIM OF STUDY: Using network pharmacology, UPLC-QTOF-MS analysis and experiments, the active components of SG-Tang were analyzed to explore their potential therapeutic mechanism in OA. MATERIALS AND METHODS: The components of SG-Tang were detected by UPLC-QTOF-MS, and the possible active components and mechanism of SG-Tang in the treatment of OA were screened by network pharmacology. The OA mouse model was constructed by DMM. In total, 30 mice were randomly divided into three groups: Sham, DMM, and DMM + Calycosin. H&E, safranin O/fast green staining and the OARSI scores were used to evaluate joint injury in mice. In addition, OA models were established using chondrocytes treated with 10 ng/mL IL-1ß. Treatment groups were treated with 100, 200 or 400 µM calycosin. CCK-8 assay was used for assessing the cytotoxic effects of calycosin. TUNEL staining and Western blotting were used to detect chondrocyte apoptosis. In addition, PI3K/Akt and NF-κB signaling pathway-related markers and cartilage matrix-related indicators were also detected. RESULTS: In vivo studies showed that calycosin inhibited IL-1ß-induced IL-6 and TNF-α production, as well as iNOS and COX-2 expression. Meanwhile, calycosin could inhibit IL-1ß-induced degradation of cartilage matrix, including downregulation of MMP3, MMP-13, collagen II and aggrecan. NF-κB and PI3K/AKT were also inhibited by calycosin in OA chondrocytes. Furthermore, calycosin inhibited IL-1ß-induced apoptosis in mouse chondrocytes. In a mouse model of OA, our results suggest that calycosin has a chondroprotective effect. CONCLUSIONS: According to this study, calycosin may act as a protective agent against OA by inhibiting the PI3K/AKT and NF-κB pathways. Furthermore, this study suggested that calycosin is a potential candidate for the treatment of OA.


Assuntos
Condrócitos , Osteoartrite , Animais , Apoptose , Medicamentos de Ervas Chinesas , Inflamação/patologia , Interleucina-1beta/metabolismo , Isoflavonas , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Cell Biol Int ; 46(9): 1367-1377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35842774

RESUMO

High intake of phytoestrogen has been reported to be associated with the prevention of colorectal cancer (CRC). Calycosin belongs to the phytoestrogen that has been shown to suppress CRC cells in our previous study. However, its anticancer activity and molecular mechanisms have not been elucidated. In this study, we analyzed the effect of calycosin on the viability and apoptosis of human CRC HCT116 and SW480 cells via MTT assay, flow cytometry assay, and caspase-3/7 activity assay. The protein expressions of estrogen receptor ß (ERß), PTEN, and PI3K/Akt signal pathways were determined by Western blot analysis. And then, the alterations of biological behavior in CRC cells transfected with ERß siRNA were analyzed. Mouse xenograft models were further performed to detect the antitumor effect in vivo. The results show that calycosin reduces CRC cell viability, induces cell apoptosis, and suppresses xenograft tumor growth. The protein expressions of ERß and PTEN are significantly upregulated following calycosin treatment, whereas p-AKT/AKT ratio and Bcl-2 level are downregulated. Suppressing ERß with siRNA partially attenuates the reduction in viability and apoptosis induced by calycosin. Our results indicate that calycosin shows inhibitory effects on CRC cells, which might be obtained by targeting ERß, upregulating PTEN, and inhibiting the PI3K/Akt signal pathway.


Assuntos
Neoplasias Colorretais , Receptor beta de Estrogênio , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Isoflavonas , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fitoestrógenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
12.
Phytomedicine ; 104: 154277, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752078

RESUMO

BACKGROUND: Excessive myocardial fibrosis is the pathological basis of heart failure following myocardial infarction (MI). Although calycosin improves cardiac function, its effect on cardiac fibrosis and cardiac function after MI in mice and its precise mechanism remain unclear. PURPOSE: Here, we firstly investigated the effects of calycosin on cardiac fibrosis and ventricular function in mice after MI and the role of transforming growth factor-beta receptor 1 (TGFBR1) signaling in the amelioration of cardiac fibrosis and ventricular function. METHODS: In vivo effects of calycosin on cardiac structure and function in mice with MI induced by left anterior descending coronary artery ligation were determined by hematoxylin and eosin staining, Masson trichrome staining, and echocardiography. The molecular mechanism of the interaction between TGFBR1 and calycosin was investigated using molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), immunohistochemistry, and western blotting (WB). Subsequently, cardiac-specific Tgfbr1 knockout mice were used to verify the effects of calycosin. The effect of calycosin on primary cardiac fibroblasts (CFs) proliferation and collagen deposition was detected using cell counting (CCK-8), EdU assay, and WB in vitro. CFs infected with an adenovirus that encodes TGFBR1 were used to verify the effects of calycosin. RESULTS: In vivo, calycosin attenuated myocardial fibrosis and cardiac dysfunction following MI in a dose-dependent pattern. Calycosin-TGFBR1 complex was found to have a binding energy of -9.04 kcal/mol based on molecular docking. In addition, calycosin bound steadily in the cavity of TGFBR1 during the MD simulation. Based on SPRi results, the solution equilibrium dissociation constant for calycosin and TGFBR1 was 5.11 × 10-5 M. Calycosin inhibited the expression of TGFBR1, Smad2/3, collagen I, and collagen III. The deletion of TGFBR1 partially counteracted these effects. In vitro, calycosin suppressed CFs proliferation and collagen deposition after TGF-ß1 stimulation by suppressing the TGFBR1 signaling pathway. The suppressive effects of calycosin were partially rescued by overexpression of TGFBR1. CONCLUSION: Calycosin attenuates myocardial fibrosis and cardiac dysfunction following MI in mice in vivo via suppressing the TGFBR1 signaling pathway. Calycosin suppresses CFs proliferation and collagen deposition induced by TGF-ß1 via inhibition of the TGFBR1 signaling pathway in vitro.


Assuntos
Infarto do Miocárdio , Animais , Colágeno/metabolismo , Fibrose , Isoflavonas , Camundongos , Simulação de Acoplamento Molecular , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534246

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
14.
J Oleo Sci ; 71(6): 881-887, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35584953

RESUMO

Spinal injury is a complicated disease and is reported to be associated with damages on spinal astrocytes induced by oxidative injury. Astragali Radi, a famous traditional Chinese medicine, is reported to have promising efficacy in protecting injuries in the central nervous system. This study aims to investigate the effect of calycosin, an isoflavone phytoestrogens isolated from Astragali Radi, on oxidative injury in spinal astrocytes induced by H2O2 and the underlying mechanism. Primary rat spinal astrocytes were pretreated with 5, 10, and 20 µM calycosin and subjected to H2O2 treatment for 24 h to establish an oxidative injury model. Cell viability was detected using the CCK-8 assay to screen the optimized concentration of calycosin. Flow cytometry was used to evaluate the apoptotic rate and cell cycle. The expression level of Brdu was visualized using the immunofluorescence assay. Western blotting was used to measure the expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 in spinal astrocytes. We found that proliferation was inhibited and that apoptosis was induced by the stimulation of H2O2. The expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 were significantly elevated in H2O2-treated astrocytes. After the treatment of calycosin, proliferation was facilitated, and apoptosis was suppressed. These phenomena were accompanied by the downregulation of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6, which were abolished by the co-administration of PI3K (ly294002) or STAT3 (stattic) inhibitor. Overall, calycosin alleviated oxidative injury in spinal astrocytes by mediating the GP130/JAK/STAT pathway.


Assuntos
Astrócitos , Isoflavonas , Animais , Apoptose , Astrócitos/metabolismo , Receptor gp130 de Citocina/metabolismo , Peróxido de Hidrogênio/toxicidade , Interleucina-6/metabolismo , Isoflavonas/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Transdução de Sinais
15.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163281

RESUMO

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Assuntos
Isoflavonas/farmacologia , Melaninas/metabolismo , Animais , Astragalus propinquus/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Isoflavonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , alfa-MSH/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Pharmacol Res ; 176: 106081, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033650

RESUMO

To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.


Assuntos
Medicina Tradicional Chinesa , Animais , Humanos , Sistema Imunitário , Imunomodulação , Redes e Vias Metabólicas
17.
Environ Toxicol ; 37(4): 858-867, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34990515

RESUMO

Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Astrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Isoflavonas , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 225-236, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36647722

RESUMO

Breast cancer is the most commonly diagnosed cancer worldwide. Previously, we reported that calycosin, a typical isoflavone phytoestrogen, triggers apoptosis and is associated with lncRNA HOTAIR in the estrogen receptor (ER)-positive breast cancer MCF-7-cell line. In the present study, we aim to uncover the mechanism of lncRNA HOTAIR in the inhibitory effect induced by calycosin in both ER-positive and ER-negative breast cancer cell lines. Results show that calycosin significantly inhibits proliferation and triggers apoptosis in both ER-positive (MCF-7 and T47D) and ER-negative (MDA-MB-231 and SK-BR-3) breast cancer cell lines, accompanied by downregulation of lncRNA HOTAIR expression. Accordingly, knockdown of lncRNA HOTAIR promotes the anti-tumor effect of calycosin, while overexpression of lncRNA HOTAIR attenuates this effect. Meanwhile, the expression levels of HuR and IGF2BP1 are also reduced by calycosin. More importantly, calycosin facilitates the downregulation of HuR and IGF2BP1 caused by decreasing lncRNA HOTAIR expression, and the upregulation of HuR and IGF2BP1 caused by overexpression of lncRNA HOTAIR is weakened by calycosin. These results demonstrate that downregulating HuR and IGF2BP1 by suppressing lncRNA HOTAIR results in inhibited growth of breast cancer cells by calycosin. In addition, the binding of HuR and IGF2BP1 to lncRNA HOTAIR is detected by RIP assay, implying an interaction between these two proteins and lncRNA HOTAIR. Together, lncRNA HOTAIR may play a carcinogenic role in breast cancer development and has the potential to be a novel therapeutic target for breast cancer in the future, especially in isoflavone phytoestrogen therapy.


Assuntos
Neoplasias da Mama , Isoflavonas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Fitoestrógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Isoflavonas/farmacologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
19.
Artigo em Chinês | WPRIM | ID: wpr-928172

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-β-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
20.
World J Gastroenterol ; 27(44): 7669-7686, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34908806

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common and life-threatening complication of severe acute pancreatitis (SAP). There are currently limited effective treatment options for SAP and associated ALI. Calycosin (Cal), a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties, but its effect on SAP and associated ALI has yet to be determined. AIM: To identify the roles of Cal in SAP-ALI and the underlying mechanism. METHODS: SAP was induced via two intraperitoneal injections of L-arg (4 g/kg) and Cal (25 or 50 mg/kg) were injected 1 h prior to the first L-arg challenge. Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically. An in vitro model of lipopolysaccharide (LPS)-induced ALI was established using A549 cells. Immunofluorescence analysis and western blot were evaluated in cells. Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1. RESULTS: Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI. Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP. Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, IL-1ß, HMGB1 and chemokine (CXC motif) ligand 1 in lung tissue. Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B (NF-κB) p65 in lung tissues and an in vitro model of LPS-induced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI. Furthermore, molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1. CONCLUSION: Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Proteína HMGB1 , Pancreatite , Doença Aguda , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Inflamação/tratamento farmacológico , Isoflavonas , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA