RESUMO
Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.
Assuntos
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Extratos Vegetais/farmacologiaRESUMO
BACKGROUND: Recent reports have highlighted the significance of plant bioactive components in drug development targeting neurodegenerative disorders such as Alzheimer's disease (AD). Thus, the current study assessed antioxidant activity and enzyme inhibitory activity of the aqueous extract of Talinum triangulare leave (AETt) as well as molecular docking/simulation of the identified phytonutrients against human cholinesterase activities. METHODS: In vitro assays were carried out to assess the 2,2- azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) cation radicals and cholinesterase inhibitory activities of AETt using standard protocols. High performance liquid chromatography coupled with diode-array detection (HPLC-DAD) was employed to identify compounds in AETt. Also, for computational analysis, identified bioactive compounds from AETt were docked using Schrodinger's GLIDE against human cholinesterase obtained from the protein data bank ( https://www.rcsb.org/ ). RESULTS: The results revealed that AETt exhibited a significant concentration-dependent inhibition against ABTS cation radicals (IC50 = 308.26 ± 4.36 µg/ml) with butylated hydroxytoluene (BHT) as the reference. Similarly, AETt demonstrated a significant inhibition against acetylcholinesterase (AChE, IC50 = 326.49 ± 2.01 µg/ml) and butyrylcholinesterase (BChE, IC50 = 219.86 ± 4.13 µg/ml) activities with galanthamine as the control. Molecular docking and simulation analyses revealed rutin and quercetin as potential hits from AETt, having showed strong binding energies for both the AChE and BChE. In addition, these findings were substantiated by analyses, including radius of gyration, root mean square fluctuation, root mean square deviation, as well as mode similarity and principal component analyses. CONCLUSION: Overall, this study offers valuable insights into the interactions and dynamics of protein-ligand complexes, offering a basis for further drug development targeting these proteins in AD.
Assuntos
Doença de Alzheimer , Benzotiazóis , Inibidores da Colinesterase , Ácidos Sulfônicos , Tetra-Hidronaftalenos , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/análise , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Doença de Alzheimer/tratamento farmacológico , CátionsRESUMO
Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.
Assuntos
Inibidores da Colinesterase , Colinesterases , Nanotubos de Carbono , Nanotubos de Carbono/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Colinesterases/sangue , HumanosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Achyranthes ferruginea (A. ferruginea) Roxb. is a common plant used in traditional medicine in Asia and Africa. It has a variety of local names, including "Gulmanci" in Nigeria, "Dangar" in Pakistan, "Thola" in Ethiopia, and "Roktoshirinchi" in Bangladesh. It is edible and has several ethnomedical uses for a wide range of illnesses, including hysteria, dropsy, constipation, piles, boils, asthma, and shigellosis. However, the neuropharmacological and analgesic potential of A. ferruginea remains uninvestigated. AIM OF THE STUDY: To assess the neuropharmacological and analgesic potential of A. ferruginea through a multifaceted approach encompassing both experimental and computational models. MATERIALS AND METHODS: Methanol was used to extract the leaves of A. ferruginea. It was then fractionated with low to high polar solvents (n-hexane, chloroform, ethyl acetate, and water) to get different fractions, including chloroform fraction (CLF). The study selected CLF at different doses and conducted advanced chemical element and proximate analyses, as well as phytochemical profiling using GC-MS. Toxicological studies were done at 300 µg per rat per day for 14 days. Cholinesterase inhibitory potential was checked using an in-vitro colorimetric assay. Acetic acid-induced writhing (AAWT) and formalin-induced licking tests (FILT) were used to assess anti-nociceptive effects. The forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM), hole board test (HBT), and light and dark box test (LDB) were among the behavioral tests used to assess depression and anxiolytic activity. Network pharmacology-based analysis was performed on selected compounds using the search tool for interacting chemicals-5 (STITCH 5), Swiss target prediction tool, and search tool for the retrieval of interacting genes and proteins (STRING) database to link their role with genes involved in neurological disorders through gene ontology and reactome analysis. RESULTS: Qualitative chemical element analysis revealed the presence of 15 elements, including Na, K, Ca, Mg, P, and Zn. The moisture content, ash value, and organic matter were found to be 11.12, 11.03, and 88.97%, respectively. GC-MS data revealed that the CLF possesses 25 phytoconstituents. Toxicological studies suggested the CLF has no effects on normal growth, hematological and biochemical parameters, or cellular organs after 14 days at 300 µg per rat. The CLF markedly reduced the activity of both acetylcholinesterase and butyrylcholinesterase (IC50: 56.22 and 13.22 µg/mL, respectively). Promising dose-dependent analgesic activity (p < 0.05) was observed in chemically-induced pain models. The TST and FST showed a dose-dependent substantial reduction in immobility time due to the CLF. Treatment with CLF notably increased the number of open arm entries and time spent in the EPM test at doses of 200 and 400 mg/kg b.w. The CLF showed significant anxiolytic activity at 200 mg/kg b.w. in the HBT test, whereas a similar activity was observed at 400 mg/kg b.w. in the EPM test. A notable increase in the amount of time spent in the light compartment was observed in the LDB test by mice treated with CLF, suggesting an anxiolytic effect. A network pharmacology study demonstrated the relationship between the phytochemicals and a number of targets, such as PPARA, PPARG, CHRM1, and HTR2, which are connected to the shown bioactivities. CONCLUSIONS: This study demonstrated the safety of A. ferruginea and its efficacy in attenuating cholinesterase inhibitory activity, central and peripheral pain, anxiety, and depression, warranting further exploration of its therapeutic potential.
Assuntos
Achyranthes , Ansiolíticos , Ratos , Camundongos , Animais , Ansiolíticos/efeitos adversos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Clorofórmio , Acetilcolinesterase , Butirilcolinesterase , Analgésicos/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Nigéria , PaquistãoRESUMO
In this study, eight new natural products were isolated from the leaves of Picrasma quassioides. Spectroscopic techniques were used for the elucidation of their planar structures. Their absolute configurations were elucidated on the basis of electron circular dichroism (ECD) techniques combined with the P/M helicity rule for the 2,3-dihydrobenzofuran chromophore, and saccharide hydrolysis. Cholinesterase inhibitors are often used as Alzheimer's disease inhibitors.Thus, acetylcholinesterase and butyrylcholinesterase inhibitory activity of these eight compounds were tested, and results showed that only compound 6 showed weakly acetylcholinesterase inhibitory activity. In particular, molecular docking was used to illustrate the bindings between compound 6 and the active sites of AChE.
Assuntos
Lignanas , Picrasma , Lignanas/farmacologia , Estrutura Molecular , Acetilcolinesterase , Picrasma/química , Butirilcolinesterase , Glicosídeos/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Dicroísmo CircularRESUMO
The EtOH extracts of the leaves of two new cultivars (Uysal-SFU and Turgut-SFT) of Salvia fruticosa Mill. was tested against acetylcholinesterase (IC50: 30.62 ± 3.27 and 32.97 ± 2.33 µg/mL for SFU and SFT, respectively) and butyrylcholinesterase (IC50: 69.91 ± 1.08 µg/mL and 86.55 ± 1.26 µg/mL), respectively, relevant to Alzheimer's disease. The essential oils showed a stumpy inhibition against AChE and no inhibition against BChE. DPPH radical scavenging activity of the extracts (86.70 ± 0.17% and 86.14 ± 1.13% for SFU and SFT, respectively) was stronger than that of quercetin (85.51 ± 0.17%): Their (1.24 ± 0.05 and 1.04 ± 0.16 for SFU and SFT, respectively) ferric-reducing antioxidant power were close to that of the reference (e.g. quercetin, 1.42 ± 0.14). Molecular docking simulations were performed on their major monoterpenes. Our findings revealed that the leaf EtOH extracts of two cultivars are promising inhibitors of both AChE and BChE.
Assuntos
Óleos Voláteis , Salvia , Butirilcolinesterase , Antioxidantes/farmacologia , Acetilcolinesterase , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Quercetina , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologiaRESUMO
A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against ß-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.
Assuntos
Doença de Alzheimer , Tacrina , Camundongos , Animais , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Simulação de Acoplamento Molecular , Desenho de Fármacos , Relação Estrutura-AtividadeRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease linked to memory impairment. A current investigation was performed to assess the neuroprotective effect of Diospyrin, a novel therapeutic agent, for the curing of Alzheimer's disease. For this purpose, in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory assays and antioxidant studies were conducted, whereas in-vivo studies involved different behavioral animal models tests such as elevated plus maze (EPM), morris water maze (MWM) and paddling Y-maze test. Results of the in-vitro analysis showed IC50 values of 95 µg/mL for AChE and 110 µg/mL for BChE as compared to the standard drug donepezil (IC50: 95 & 85 µg/mL, respectively). DPPH antioxidant assay showed a maximum of 72.85% inhibition (IC50: 139.74 µg/mL) of DPPH-free radicals at the highest concentration of 1000 µg/mL as compared to the ascorbic acid (IC50: 13.72 µg/mL). Moreover, the in-vivo analysis revealed that diospyrin treatment demonstrated gradual betterment in memory and enhanced motor functionality. On the other hand, the computational analysis also showed that the diospyrin had exceptional binding affinities for both AChE and BChE enzymes. In the net shell, it may be deduced that our compound diospyrin could be a valuable drug candidate in managing neurodegenerative disorders like AD.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Simulação de Acoplamento MolecularRESUMO
This study was conducted to examine the chemical composition of the essential oils (EOs) from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities. The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using GC/MS. The main class of compounds was constituted by oxygenated monoterpenes, particularly prominent in E. brevifolia (75.7%), E. lehmannii (72.8%), and E. woollsiana (67%). Anti-enzymatic activities against cholinesterases, α-amylase, and α-glucosidase were evaluated using spectrophotometric methods. Notably, the E. brevifolia, E. extensa, E. leptophylla, E. patellaris, and E. woollsiana EOs displayed potent acetylcholinesterase (AChE) inhibition (IC50: 0.25-0.60 mg/mL), with E. lehmannii exhibiting lower activity (IC50: 1.2 mg/mL). E. leptophylla and E. brevifolia showed remarkable α-amylase inhibition (IC50: 0.88 mg/mL), while E. brevifolia and E. leptophylla significantly hindered α-glucosidase (IC50 < 30 mg/mL), distinguishing them from other EOs with limited effects. Additionally, the EOs were assessed for their anti-biofilm properties of Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The E. extensa EO demonstrated the main antibiofilm effect against E. coli and L. monocytogenes with an inhibition > 80% at 10 mg/mL. These findings could represent a basis for possible further use of Eucalyptus EOs in the treatment of human microbial infections and/or as a coadjutant in preventing and treating Alzheimer's disease and/or diabetes mellitus.
Assuntos
Eucalyptus , Óleos Voláteis , Humanos , Eucalyptus/química , Escherichia coli , Tunísia , Acetilcolinesterase/farmacologia , alfa-Glucosidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Eucalipto/farmacologia , alfa-Amilases , Testes de Sensibilidade MicrobianaRESUMO
Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aß1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aß1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aß-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.
Assuntos
Citrus , Doenças Neurodegenerativas , Doença de Parkinson , Doenças Neurodegenerativas/tratamento farmacológico , Superóxido Dismutase , Monoaminoxidase , Colinesterases , Superóxido Dismutase-1 , Extratos Vegetais/farmacologiaRESUMO
Several natural remedies are used in the Traditional Persian Medicine (TPM) to prevent dementia, but their efficacy is debated. In this work, an improved "Safoof-e-Nesyan" formulation described in the "Qarabadin-e-Azam" pharmacopoeia was developed, and its chemical composition and antioxidant and anti-cholinesterase properties were assessed. The formulation contains a mixture (FM) of Cinnamomum cassia (CC), C. verum (CV), Pistacia lentiscus (PL), Rheum palmatum (RP), Syzygium aromaticum (SA), and Zingiber officinalis (ZO) powdered plants. Its total phenolic content is 110.45 mg GAE/g, while the total flavonoid content is 6.28 mg RE/g. 66 secondary metabolites (mainly tannins, flavonoids, anthraquinones, and gingerols) were identified by UPLC-QToF-MS analysis. FM exerts antioxidant effects by scavenging radicals, and by reducing and chelating metals such as Mb, Cu and Fe. The anticholinesterase activity of one gram of the FM equals that of 3.60 mg of the reference drug galantamine, on both acetyl- and butyryl-cholinesterase. Correlations between specific compounds and bioactivities were highlighted by multivariate analysis of data: lyoniresinol 9'-glucoside strongly correlates with antiradical activities on DPPH and ABTS and reducing activity on Cu, and with anti-AChE effects. Most of the identified flavonoids and the ellagic acid derivatives positively correlate with the reducing activity on Fe and Mb, and with anti-BChE effects. Finally, a tablet formulation of the FM was developed, and its physical properties were preliminarily assessed. Overall, our results indicate that the FM may be a useful natural remedy for dementia, although further safety and efficacy assessments in vivo are required.
Assuntos
Inibidores da Colinesterase , Demência , Humanos , Inibidores da Colinesterase/farmacologia , Antioxidantes/farmacologia , Medicina Tradicional , Fitoterapia , Flavonoides , Demência/tratamento farmacológicoRESUMO
BACKGROUND: The aim of this study was to demonstrate that both neurological and hepatic symptoms respond to copper chelation therapy in Wilson disease (WD). However, the time course of their recovery is different. METHODS: Eighteen patients with neurological WD from a single specialized center who had been listed for liver transplantation during the last ten years and two newly diagnosed homozygous twins were recruited for this retrospective study. The mean duration of conventional treatment was 7.3 years (range: 0.25 to 36.2 years). A custom Wilson disease score with seven motor items, three non-motor items, and 33 biochemical parameters of the blood and urine, as well as the MELD score, was determined at various checkup visits during treatment. These data were extracted from the charts of the patients. RESULTS: Treatment was initiated with severity-dependent doses (≥900 mg) of D-penicillamine (DPA) or triethylene-tetramin-dihydrochloride (TRIEN). The motor score improved in 10 and remained constant in 8 patients. Worsening of neurological symptoms was observed only in two patients who developed comorbidities (myasthenia gravis or hemispheric stroke). The neurological symptoms continuously improved over the years until the majority of patients became only mildly affected. In contrast to this slow recovery of the neurological symptoms, the MELD score and liver enzymes had already started to improve after 1 month and rapidly improved over the next 6 months in 19 patients. The cholinesterase levels continued to increase significantly (p < 0.0074) even further. One patient whose MELD score indicated further progression of liver disease received an orthotopic liver transplantation 3 months after the diagnosis of WD and the onset of DPA treatment. CONCLUSIONS: Neurological and hepatic symptoms both respond to copper chelation therapy. For patients with acute liver failure, the first 4 months are critical. This is the time span in which patients have to wait either for a donor organ or until significant improvement has occurred under conventional therapy. For patients with severe neurological symptoms, it is important that they are treated with fairly high doses over several years.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants of the family Rosaceae have a long history of traditional uses in the management of neurological disorders. Sorbaria tomentosa Lindl. Rehder is composed of antioxidant and neuroprotective polyphenolics. AIMS OF THE STUDY: The current study was designed to explore phenolics profile via high performance liquid chromatography-photodiode array detector (HPLC-DAD) and validated the neuroprotective and anxiolytic potentials of S. tomentosa by applying in vitro and in vivo approaches. MATERIALS AND METHODS: The plant crude methanolic extract (St.Crm) and fractions were subjected to HPLC-DAD analysis for qualitative and quantitative assessment of phytochemicals. Samples were screened for in vitro free radicals scavenging assays by using 2,2-diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) along with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibition assays. For cognitive and anxiolytic studies, mice were subjected to open field, elevated plus maze (EPM), light-dark model, Y-maze, shallow water maze (SWM), and novel object recognition (NOR) tests. RESULTS: HPLC-DAD analysis revealed the presence of high concentrations of phenolic compounds. For instance, in St.Cr, 21 phenolics were quantified, among which apigenin-7-glucoside (291.6 mg/g), quercetin (122.1 mg/g), quercetin-3-feruloylsophoroside-7-glucoside (52.6 mg/g), quercetin-7-glucoside (51.8 mg/g), ellagic acid (42.7 mg/g), luteolin (45.0 mg/g), kaempferol (40.5 mg/g), 5-feruloylquinic acid (43.7 mg/g) were present in higher concentrations. Likewise, in ethyl acetate fraction (St.Et.Ac), 21 phenolics were identified as 3,5-di-caffeoylquinic acid (177.4 mg/g) and 5-hydroxybenzoylquinic acid (46.9 mg/g) were most abundant phytochemicals. Highly valuable phenolics were also identified in other fractions including butanol (St.Bt), chloroform (St.Chf), and n-hexane (St.Hex). The various fractions exhibited concentration dependent inhibition of free radicals in DPPH and ABTS assays. Potent AChE inhibitory potentials were revealed by the test samples with St.Chf, St.Bt and St.EtAc being the most active having an IC50 of 298.1, 580.1, and 606.47 µg mL-1, respectively. Similarly, St.Chf, St.Bt, St.EtAc and St.Cr exhibited potent BChE inhibitory activity and was observed as 59.14, 54.73, 51.35 and 49.44%, respectively. A significant improvement in the exploratory behavior was observed in open field test and stress/anxiety was relieved effectively at 50-100 mg/kg. Likewise, EPM, light-dark and NOR tests revealed an anxiolytic and memory enhancing behaviors. These effects were further corroborated from the Y-maze and SWM transgenic studies that showed considerable improvement in cognition retention. CONCLUSIONS: These findings concluded that S. tomentosa possessed potential anxiolytic and nootropic efficacies and may have therapeutic potential in neurodegenerative disorders.
Assuntos
Ansiolíticos , Butirilcolinesterase , Animais , Camundongos , Quercetina/análise , Acetilcolinesterase , Cromatografia Líquida de Alta Pressão , Ansiolíticos/farmacologia , Polifenóis/farmacologia , Polifenóis/análise , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/química , Antioxidantes/química , Radicais Livres , Fenóis/farmacologia , Fenóis/análise , CogniçãoRESUMO
BACKGROUND: The plants from Salvia genus contain widely distributed species which have been used in folk medicine as well as pharmaceutical and food industries. METHODS: The chemical composition of 12 native Iranian Salvia species (14 plants) was identified using gas chromatography-mass spectrometry (GC-MS). Also, the inhibitory activity of all essential oils (EOs) was evaluated toward α-glucosidase and two types of cholinesterase (ChE) using spectrophotometric methods. The in vitro α-glucosidase inhibition assay was performed by the determination of p-nitrophenol (pNP) obtained from the enzymatic dissociation of p-nitrophenol-α-D-glucopyranoside (pNPG) as the substrate. In vitro ChE inhibitory assay was conducted based on the modified Ellman's procedure using the measurement of 5-thio-2-nitrobenzoic acid produced from the hydrolysis of thiocholine derivatives as the substrate, in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). RESULTS: Totally, 139 compounds were detected and caryophyllene oxide and trans-ß-caryophyllene were the most abundant compounds in all EOs. The yield of EOs extracted from the plants were also calculated in the range of 0.06 to 0.96% w/w. Herein, α-glucosidase inhibitory activity of 8 EOs was reported for the first time and among all, S. spinosa L. was found to be the most potent inhibitor (90.5 inhibition at 500 µg/mL). Also, the ChE inhibitory activity of 8 species was reported for the first time and our results showed that the BChE inhibitory effect of all EOs was more potent than that of AChE. The ChE inhibition assay indicated that S. mirzayanii Rech.f. & Esfand. collected from Shiraz was the most potent inhibitor (72.68% and 40.6% at the concentration of 500 µg/mL, toward AChE and BChE, respectively). CONCLUSIONS: It seems that native Salvia species of Iran could be considered in the development of anti-diabetic and anti-Alzheimer's disease supplements.
Assuntos
Óleos Voláteis , Salvia , Butirilcolinesterase/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Acetilcolinesterase , Irã (Geográfico) , Salvia/química , alfa-Glucosidases , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/químicaRESUMO
PURPOSE: Opioid use disorder is a significant global problem. Chronic heroin use is associated with impairment of cognitive function and conscious control ability. The cholinergic system can be disrupted following heroin administration, indicating that activation of the cholinergic system may prevent chronic heroin misuse. Donepezil as an inhibitor of cholinesterase has been reported to clinically improve cognition and attention. In this study, the inhibition of heroin self-administration and heroin-seeking behaviours by donepezil were evaluated in rats. METHODS: Rats were trained to self-administer heroin every four hours for 14 consecutive days under a fixed ratio 1 (FR1) reinforcement schedule, then underwent withdrawal for two weeks. A progressive ratio schedule was then used to evaluate the relative motivational value of heroin reinforcement. After withdrawal, a conditioned cue was introduced for the reinstatement of heroin-seeking behaviour. Donepezil (0.3-3 mg/kg, i.p.) was used during both the FR1 heroin self-administration and progressive ratio schedules. Immunohistochemistry was used to investigate the mechanism of action of donepezil in the rat brain. RESULTS: Pre-treatment with high dose donepezil (3 mg/kg) but not low doses (0.3-1 mg/kg) significantly inhibited heroin self-administration under the FR1 schedule. Donepezil decreased motivation values under the progressive ratio schedule in a dose-dependent manner. All doses of donepezil (1-3 mg/kg) decreased the reinstatement of heroin seeking induced by cues. Correlation analysis indicated that the inhibition of donepezil on heroin-seeking behaviour was positively correlated with an increased expression of dopamine receptor 1 (D1R) and dopamine receptor 2 (D2R) in the nucleus accumbens (NAc) and increased expression of choline acetyltransferase (ChAT) in the ventral tegmental area (VTA). CONCLUSIONS: The present study demonstrated that donepezil could inhibit heroin intake and heroin-seeking behaviour. Further, donepezil could regulate dopamine receptors in the NAc via an increase of acetylcholine. These results suggested that donepezil could be developed as a potential approach for the treatment of heroin misuse.
Assuntos
Dependência de Heroína , Nootrópicos , Ratos , Animais , Heroína/farmacologia , Heroína/uso terapêutico , Donepezila/farmacologia , Sinais (Psicologia) , Nootrópicos/farmacologia , Condicionamento Operante , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/psicologia , Ratos Sprague-Dawley , Receptores Dopaminérgicos , Colinérgicos/uso terapêutico , Extinção PsicológicaRESUMO
OBJECTIVE: To discover a drug from natural triterpenes that has no side effects and is effective in treating Alzheimer's disease. We predict that the drug will be put on the market soon and achieve success. METHODS: The methanolic extract of M. leucodendron leaves was fractionated and subjected to different chromatographic techniques to isolate two new triterpene glycosides alongside five known compounds kaempferol 3, quercetin 4, quercetin3-O-ß-D-glucopyranoside 5, kaempferol3- O-ß-D-glucopyranoside 6 and kaempferol3-O-α-L-rhamnoside 7. The structures of compounds 1 and 2 were elucidated by spectroscopic analysis and chemical means. RESULTS: Two new triterpene glycosides, 21-O-α-L-rhamnopyranosyl-olean-12-ene-3-O-[α-Lrhamnopyranosyl (1-4) ß-D-galactopyranosyl (1-4) ß-D-glucouronopyranoside]1 and 21-O-α-Lrhamnopyranosyl- olean-12-ene-3-O-[α-L-rhamnopyranosyl (1â4) ß-D-galactopyra-nosyl (1â4) ß-D-galactopyranoside] 2, were isolated for the first time from 70% aqueous methanolic extract (AME) of M. leucodendron leaves. The inhibitory activities of the said compounds toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were then assayed. Both compounds exhibited significant inhibitory activities toward the two enzymes, and evidence indicated that compound 2 was a more effective inhibitor than compound 1. CONCLUSION: Compounds 1 and 2 have a significant role in inhibiting the enzymes acetylcholinesterase and butyrylcholinesterase.
Assuntos
Melaleuca , Triterpenos , Acetilcolinesterase , Butirilcolinesterase/análise , Glicosídeos/farmacologia , Folhas de Planta/química , Extratos Vegetais/química , Triterpenos/química , Estrutura MolecularRESUMO
Terminalia citrina (T.â citrina) belongs to the Combretaceae family and is included in the class of medicinal plants in tropical countries such as Bangladesh, Myanmar, and India. The antioxidant activities of lyophilized water (WTE) and alcohol extracts (ETE) of T.â citrina fruits, their phenolic content by LC-HRMS, and their effects on cholinesterases (ChEs; AChE, acetylcholinesterase, and BChE, butyrylcholinesterase) were investigated. Especially ten different analytical methods were applied to determine the antioxidant capacity. Compared with similar studies for natural products in the literature, it was determined that both WTE and ETE exhibited strong antioxidant capacity. Syringe and ellagic acids were higher than other acids in ETE and WTE. IC50 values for ETE and WTE in DPPH radical and ABTSâ + scavenging activities were calculated as 1.69-1.68â µg mL-1 and 6.79-5.78â µg mL-1 , respectively. The results of the biological investigations showed that ETE and WTE had an inhibition effect against ChEs, with IC50 values of 94.87 and 130.90â mg mL-1 for AChE and 262.55 and 279.70â mg mL-1 for BChE, respectively. These findings indicate that with the prominence of herbal treatments, T.â citrina plant may guide the literature in treating Alzheimer's Disease, preventing oxidative damage, and mitochondrial dysfunction.
Assuntos
Butirilcolinesterase , Terminalia , Butirilcolinesterase/química , Antioxidantes/farmacologia , Antioxidantes/química , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
In the study, water, ethanol, methanol, dichloromethane, and acetone extracts of Asparagus officinalis L. were obtained by maceration. DPPHâ , ABTSâ + , FRAP, and CUPRAC methods determined the antioxidant capacities of all extracts. Moreover, the inâ vitro effects of extracts on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase (CA)-I, CA-II and α-Glycosidase were investigated. At a 10â µg/ml concentration, the extract with the highest Fe3+ reduction capacity was ethanol (AE), and the extract with the highest Cu2+ reduction capacity was acetone (AA). AE for AChE (IC50 =21.19â µg/ml) and α-Glycosidase (IC50 : 70.00â µg/ml), methanol (AM) for BChE (IC50 =17.33â µg/ml), CA-I and II (IC50 =79.65 and 36.09â µg/ml, respectively) showed the most potent inhibition effect. The content analysis of acetone extract was performed with LC/MS-MS, the first three phytochemicals found most were p-Coumaric acid, rutin, and 4-hydroxybenzoic acid (284.29±3.97, 135.39±8.19, and 102.06±5.51â µg analyte/g extract, respectively).
Assuntos
Antioxidantes , Asparagus , Antioxidantes/química , Butirilcolinesterase , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Metanol , Acetona , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Etanol , Glicosídeo HidrolasesRESUMO
Sacred lotus (Nelumbo nucifera) is a commercial product in Asian countries. Almost all parts of the lotus plant are consumed as food or used as traditional medicine due to their high contents of secondary metabolites such as phenolics and alkaloids. However, agricultural management of the sacred lotus occurs during the rainy season, and the plant enters a resting stage during the dry season. Thus, seasonal variation (beginning, middle and end of the rainy season) was investigated for total phenolic contents (TPCs), antioxidant capacities and inhibitions of the key enzymes relevant to chronic diseases including Alzheimer's disease (ß-secretase, acetylcholinesterase and butyrylcholinesterase), hypertension (angiotensin-converting enzyme), obesity (lipase) and diabetes (α-glucosidase) of different sacred lotus parts (seed embryo, petal, stamen, old leaf, leaf stalk and flower stalk). Results indicated that an aqueous extract of stamen in all harvesting seasons exhibited potentially high TPCs, which led to high antioxidant activities and most enzyme inhibitions (up to 53.7-fold higher) than the others collected in the same harvesting period. The phenolic content and biochemical activities in stamen harvested at the beginning of the rainy season were up to 4-fold higher than during other harvesting periods. This information benefits the agricultural management of sacred lotus and supports consumption of different sacred lotus parts for health promotion. Results can be used as an initial database for future product development from different sacred lotus parts.
RESUMO
Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.